
3 Introducing Logical Vocabulary
Making Reason Relations Logical
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In this chapter, we introduce a broadly proof-theoretic way to codify
and theorize open reason relations among sentences of a language that
contains logical vocabulary. We interpret this proof-theoretic formalism in
a pragmatic-normative way. Throughout this book, we restrict ourselves
to the sentential level, as things turn out to be fascinating and complex
enough at that level. Thus, we are mainly concerned with negation (¬),
the conditional (→), disjunction (∨), and conjunction (∧). In this chapter,
we present a sequent calculus treatment of these connectives that is almost
entirely standard and conventional. What is exciting about this treatment,
however, is that it allows us to capture, in a formally rigorous way, the ideas
of logical expressivism that we have presented in the previous chapters, and
this includes capturing open reason relations in which topological closure
as well as explicitation closure fail. In later chapters, we will often return
to the logical systems that we introduce in this chapter. One of the chief
accomplishments of this book lies in the fact that we show how these logical
systems appear and emerge naturally from different perspectives, including
the perspective of truth-maker theory in the next chapter and the more
abstract perspective of implication-space semantics in Chapter Five.

Before turning to more formal and technical matters, let us recapitulate
where we are in our philosophical project. In the first two chapters, we
have introduced the idea of reason relations according to a pragmatics-
first approach, as well as the thesis of logical expressivism. To repeat,
we start with a discursive practice of giving reasons for and against
claims. This practice is constrained by reason relations of implication and
incompatibility. In particular, the sentences in a set Γ are jointly a reason for
the sentence A if and only if Γ implies A, which we write as Γ ∼ A. And the
sentences in Γ are jointly a reason against the sentence A if and only if Γ is
incompatible with A, which we write as Γ#A. We encode both relations in
one single relation by stipulating that Γ, A ∼ (notice the empty right side)
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just in case Γ#A. According to logical expressivism, it is the characteristic
function of logical vocabulary to make such reason relations explicit.

The sense of “reason for” and “reason against” in this book is
emphatically not the sense in which a reason for or against a claim makes
it the case that one ought to accept or reject the claim, respectively. For,
what one ought to do may be to reject the reason, as Harman (1986) has
stressed in his work on the normativity of logic. Rather, if one accepts or
rejects something for a (operative) reason, then this acceptance or rejection
is performed for good reason only if the (operative) reason is indeed a
reason (in our sense) for or against, respectively, what one accepts or rejects.
Thus, if one accepts A for the reason Γ, then that Γ implies A is a necessary
but not a sufficient condition for one’s accepting A being done for good
reason.

We have stressed that not all good reasons are logically good reasons,
and we call the mistake of thinking otherwise “logicism about reasons.”
Correspondingly, our implication relation includes more than just logical
implications, and our incompatibility relation includes more than just
logical incompatibilities. We denote classical propositional consequence by

CL . So we know that ∼ is not identical to CL . Indeed, we have argued
that ∼ ought to differ from classical consequence in fundamental and
radical ways. In particular, it should be nonmonotonic and nontransitive.
For, our aim is to offer a treatment of logical vocabulary as being able
to make explicit open reason relations. Nevertheless, one might plausibly
claim that, while not all good implications are logically good implications,
all implications of classical logic are indeed good implications, so that CL
⊂ ∼. This classical subset of all implications obeys, of course, traditional
structural principles, and this turns out to be the case for our theory below.
We are thus not offering a nonmonotonic logic but rather an account of
consequence and a logic that can codify generally nonmonotonic material
implications as well as monotonic logical implications.

In contrast to standard approaches to nonmonotonic logic, we do not
start with a familiar logical consequence relation, like CL , and then
try to extend it to a nonmonotonic consequence relation. Rather, we
start with a nonmonotonic consequence relation over atomic sentences,
which we then extend to a logically complex language in such a way
that the result includes classical consequence. The way in which we do
this is to take the implications among atomic sentences and to treat
them as axioms in a sequent calculus. Moreover, unlike most extant
approaches to nonmonotonic consequence, we treat implications and
incompatibilities as equally subject to failures of monotonicity.1 Thus, not
only can implications be defeated by adding further premises but also
incompatibilities can be “cured” by adding further claims.2
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The chapter is structured as follows: in the first subsection, we introduce
the basic sequent calculus NMMS, which illustrates how logical vocabulary
can be elaborated from any autonomous base vocabulary. In the second
subsection, we explain two different senses in which the logical vocabulary
introduced by NMMS can make reason relations explicit, including open
reason relations. Thus, the first two subsections together present a
treatment of logical vocabulary as vocabulary that is universally LX, that is,
vocabulary that can be elaborated from any autonomous base vocabulary
and can make explicit the reason relations among sentences of any base
vocabulary from which it is elaborated. In the second subsection, we also
formulate a variant of our sequent calculus that works for consequence
relations in which Contraction fails. And in the third subsection, we present
more adjustments and additions to our sequent calculus. In particular, we
show how we can introduce logical vocabulary that makes explicit local
structural features of reason relations. The fourth section concludes; and
the appendix provides proofs and lemmas that we omit in the main text, in
order to make the main text more accessible.

3.1 Sequent Calculi for Logical Expressivism

The brilliant idea behind Gentzen’s (1934) invention of sequent calculus is
to encode entire implications, rather than just sentences, in objects that are
manipulated in a calculus. These objects are called “sequents,” and we will
write them, for example, like this: Γ � ∆, where Γ is the set of the premises
and ∆ is a conclusion or a set of conclusions.3 In a sequent calculus,
instead of deriving sentences from sentences, as in natural deduction or
axiomatic systems, we derive sequents from sequents, and the thought is
that sequents that are derivable correspond to good implications. This idea
fits well with the aims of logical expressivism. For, according to logical
expressivism, the proper starting point for the formulation of an account of
consequence that includes logical consequence is a set of implications that
hold among nonlogical, that is, atomic, sentences. Such implications can
serve as the input or axioms of a sequent calculus, as will become clearer
below.

Moreover, according to the semantic inferentialism that informs our
larger project, such implications and incompatibilities among declarative
atomic sentences articulate the conceptual roles played by these sentences.
In this sense, the axioms of our sequent calculi articulate the conceptual
roles of the nonlogical vocabulary. A sequent calculus extends these
conceptual roles of atomic sentences to a consequence relation that also
articulates the conceptual roles of logically complex sentences.



106 Introducing Logical Vocabulary

3.1.1 How Many Conclusions?

Before moving on, we should pause to note that, for different logics, Gent-
zen uses two different kinds of sequents, namely sequents that can have at
most one conclusion and sequents that can have many conclusions. This is
often put by saying that we can work in a Set-Formula framework or in a
Set-Set framework, depending onwhether the conclusion is a single formula
or a set of formulae. And this can be generalized further, in one dimension,
by working with lists or multi-sets or even tree-structures instead of sets;
and it can be generalized, in another dimension, by working with sequents
that don’t have two sides but one, or three, or any other number of
sides.4 These differences have important consequences for the logics that
are formulated in a sequent calculus. It is, for instance, one of Gentzen’s
surprising results that his sequent rules yield intuitionistic logic in the Set-
Formula framework, but the very same sequent rules yield classical logic
in the Set-Set framework.

In the previous chapters, we have often talked as if ∼ is always flanked
by a set of premises on the left and a single conclusion on the right. Thus,
we have seemingly used a Set-Formula framework. We did this to avoid
confusions that might arise from the fact that it is not immediately clear
how to think philosophically about sequents with multiple conclusions.
After all, a good implication seems to correspond to a good argument or
inference, and such arguments or inferences have one or more premises
but just one single conclusion. Similarly, it seems that we give reasons for
or against single claims. Note, however, that we said that Γ is a reason
(in our technical sense) for A if and only if commitment to accept all the
sentences in Γ precludes entitlement to reject A.5 And Γ is a reason against
A if and only if commitment to accept all the sentences in Γ precludes
entitlement to accept A. These notions can readily be generalized to allow
for multiple conclusions, namely as follows: Γ is a reason for ∆ if and
only if commitment to accept all the sentences in Γ precludes entitlement
to reject all the sentences in ∆. And Γ is a reason against ∆ if and only if
commitment to accept all the sentences in Γ precludes entitlement to accept
all the sentences in ∆.

This way of understanding multiple conclusion sequents is a variant of
the view developed by Restall (2005). He calls collections of assertions and
denials “positions,” and he writes the position in which everything in Γ is
asserted and everything in ∆ is denied as [Γ : ∆]. Restall then suggests
that we can understand the claim that Γ implies ∆ as the claim that it
is normatively improper or “out-of-bounds”—as Restall says—to assert
everything in Γ and deny everything in ∆, that is, the position [Γ : ∆] is
out-of-bounds. If we think that a position is out-of-bounds just in case
one cannot be entitled to all of the commitments in the position, then our
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suggestion and Restall’s suggestion coincide. We take these to be equivalent
ways to understand implication or consequence in pragmatic-normative
terms, and we will sometimes refer to this understanding generically as
“normative bilateralism.”6

We will usually work with sequents with multiple conclusions, thus
relying on the interpretation of such sequents just given.7 We usually work
with sets of premises and conclusions, but we occasionally also use multi-
sets. So, unless specified otherwise, our sequents will be of the form Γ � ∆,
where Γ and ∆ are sets of sentences (availing ourselves of the usual ways
to omit set-theoretic notation in sequents). And we think correspondingly
about implication or consequence as also allowing formultiple conclusions,
so that we can write Γ ∼ ∆ to say that the set Γ implies the set ∆ or,
equivalently, the set ∆ is a consequence of the set Γ. As explained above,
we will write Γ, ∆ ∼ to say that Γ and ∆ are incompatible, and so the
sentences in one of these sets are jointly a reason against those in the other
set (jointly).

3.1.2 Adding Logical Vocabulary

As explained in the previous chapters, we use the term “vocabulary” to
mean a collection of expressions together with the reason relations that
hold among (sets of) them. And we formulated the core thesis of logical
expressivism as the claim that logical vocabulary is, at least as an ideal,
vocabulary that is universally LX, that is, it can be elaborated from and
is explicative of any autonomous base vocabulary. More precisely, some
vocabulary is universally LX just in case, for any base vocabulary that is
sufficient to have a discursive practice of giving and asking for reasons for
and against claims, (i) the reason relations among sentences that include
bits of the universally LX vocabulary can be elaborated from the reason
relations that hold among sentences of the base vocabulary, and (ii) the LX
vocabulary allows its users to make explicit the reason relations that hold
in the base vocabulary (and in the thus extended vocabulary).

In order to formulate a logic in accordance with this idea of logical
expressivism, we must consider two questions: (a) What does it mean to
elaborate reason relations among sentences featuring logical vocabulary
from reason relations among sentences that do not feature any logical
vocabulary? (b) What does it mean that sentences featuring logical
vocabulary allow us to make explicit reason relations? In the remainder
of this section, we address the first of these two questions by formulating
an answer in terms of a sequent calculus. We turn to the second question
in the following section.

We start with a base or base vocabulary B, which we assume to be
autonomous, in the sense of being sufficient to have a discursive practice
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of giving and asking for reasons. We will think of the lexicon of our
nonlogical, base vocabulary as a countable set of atomic sentences. Let us
call this atomic language LB. We encode the relations of reasons-for and
reasons-against among sentences of LB in a single consequence relation
∼
B

, as explained above. Hence, Γ ∼
B

∆ holds just in case the sentences in
Γ are, jointly, a reason for those in ∆. And Γ, A ∼

B
holds just in case the

sentences in Γ are jointly a reason against A.8

Definition 1 (Material Base). A material base, B, is an atomic language,
LB, and a base consequence relation,∼

B
, between subsets of this language

∼
B
⊆ P(LB) × P(LB). A base consequence relation obeys Containment

just in case ⟨Γ, ∆⟩ ∈∼
B

whenever Γ ∩ ∆ ̸= ∅.

In order to extend our base vocabulary so as to include logical
vocabulary, we must do two things. First, we must add logical expressions
to the lexicon LB. Second, we must specify the reason relations among our
thus extended lexicon. We do the first by adding the logical expressions
denoted by ¬, →, ∧, and ∨ to LB in the usual way. We call this extended
lexicon L, and, to be precise, we can define it recursively by saying: firstly,
all the sentences in LB are in L; secondly, if ϕ and ψ are any sentences in
L, then ¬ϕ, ϕ → ψ, ϕ ∧ ψ, and ϕ ∨ ψ are also in L; and lastly nothing else
is in L.

We turn to a sequent calculus to perform our second task, namely to
specify the reason relations among the sentences of our extended lexicon.9

In formal terms, we have to specify a consequence relation ∼ over sets
of sentences of L, starting from the consequence relation ∼

B
over LB.

Now, while sequent calculi can be formulated in many different ways, one
can often formulate them by using sequents with only atomic sentences as
axioms. That is what we do here. Where standard approaches use atomic
sequents with certain formal properties (such as those with a non-empty
intersection of the two sets, that is, instances of Containment), however,
we will simply use our entire base consequence relation∼

B
. So, calling our

sequent calculus NMMS (for non-monotonicmulti-succedent), we stipulate
that Γ � ∆ is an axiom of NMMS if and only if Γ ∼

B
∆. We write NMMSB

if we want to be clear what the base vocabulary is.
We can now use sequent rules to derive sequents with logically complex

sentences from our axioms. Sequent rules are usually written as one or
more schematic sequents, the top sequents, above a horizontal line and
one sequent below that line, the bottom sequent. The sentences that occur
unchanged in top sequents and bottom sequents are called the “context,”
and the sentences that occur, as free-standing sentences, only above or
below the line are called the “active formulae” of the rule; sometimes the
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active sentence below the line is called the “principal formula.” To see how
this works, let’s look at NMMS:

Axioms of NMMS:
Ax1: Γ � ∆ is an axiom if and only if Γ∼

B
∆.

Rules of NMMS:

Γ � ∆, A B, Γ � ∆ B, Γ � ∆, A
[L→]

Γ, A → B � ∆
Γ, A � B, ∆

[R→]
Γ � A → B, ∆

Γ � ∆, A
[L¬]

Γ,¬A � ∆
Γ, A � ∆

[R¬]
Γ � ∆,¬A

Γ, A, B � ∆
[L∧]

Γ, A ∧ B � ∆
Γ � ∆, A Γ � ∆, B Γ � ∆, A, B

[R∧]
Γ � ∆, A ∧ B

Γ, A � ∆ Γ, B � ∆ Γ, A, B � ∆
[L∨]

Γ, A ∨ B � ∆
Γ � ∆, A, B

[R∨]
Γ � ∆, A ∨ B

The rules of NMMS are slight variations on rules that are familiar as so-
called “Ketonen-style rules” (see Negri et al., 2008; Humberstone, 2011;
Bimbó, 2015). The only difference is that the rules that have more than one
top sequent have exactly two top sequents in Ketonen-style rules, but they
have three top sequents in NMMS. The third top sequent is such that all the
active formulae in the other top sequents occur in the third top sequent,
and they occur on the same side as in the other top sequent in which they
occur. The reason to include the third top sequents in these rules is that
they ensure that the number of copies of a sentence on the left or the right
of the sequent arrow does not make any difference to which sequents are
derivable from which other sequents. The difference matters only when
Monotonicity fails. For, Monotonicity allows one to derive the unfamiliar
third top sequent from either one of the two traditional top sequents of the
Ketonen-style rules.

As an example of what these rules say, the rule [R→] says that if we have
a sequent in which a sentence A is on the left side and a sentence B is on the
right side, then we can derive the sequent that is like the first except that
instead of A on the left and B on the right it includes the sentence A → B on
the right side.10 Thus, the rule [R→] immediately ensures that one direction
of the Deduction-Detachment condition holds. And explanations of the
other rules can be given in an analogous way.11
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A sequent is derivable just in case there is a tree of applications of these
sequent rules in which the sequent in question is at the root and every
sequent that sits at a leaf of a tree is an axiom. In the following example of
such a proof tree, the root is �((p ∧ r) ∨ s) → q and the leaves are p, r � q
and s � q and p, r, s � q.

p, r � q
[L∧]p ∧ r � q s � q

p, r, s � q
[L∧]p ∧ r, s � q
[L∨]

(p ∧ r) ∨ s � q
[R→]� ((p ∧ r) ∨ s) → q

The sequent calculusNMMS is a way to perform our second task, namely
the task of specifying the reason relations among the sentences of our
extended lexicon, because we can now say that, in our extended language
L, a set of sentences Γ implies a set of sentences ∆ just in case the sequent
Γ � ∆ is derivable inNMMS. That is, Γ ∼ ∆ if and only if Γ � ∆ is derivable in
NMMS. In this way, we can take any base vocabulary B, consisting of a set
of sentences LB and a consequence relation over them∼

B
, and extend it to

include logical vocabulary, by moving to the language L and consequence
relation∼ over the extended language L. The upshot of the example proof
tree above, for example, is that if p, r ∼

B
q and s ∼

B
q and p, r, s ∼

B
q,

then ∼ ((p ∧ r) ∨ s) → q. We call the reason relations that hold among
sentences in our logically extended lexicon the “logically extended reason
relations.”

Note that NMMS does not include any of the following rules
which are often used in sequent calculi and are among the traditional
structural principles (together with Permutation, which we take for granted
throughout this book), where the first rule allows us to derive a bottom
sequent without using any top sequents:

[Reflexivity]
A � A

Γ, A, A � ∆
[L-Contraction]

Γ, A � ∆
Γ � A, A, ∆

[R-Contraction]
Γ � A, ∆

Γ � ∆
[Weakening]

Γ, Θ � ∆, Λ
Γ � ∆, A A, Θ � Λ

[Mixed-Cut]
Γ, Θ � ∆, Λ

The reason why NMMS does not include [Reflexivity], [L-Contraction],
and [R-Contraction] as rules is very different from the reason why NMMS
does not include [Weakening] and [Mixed-Cut]. It doesn’t include the
former rules because, given a base that obeys Containment, these rules are
not necessary; adding them to NMMS does not change what is derivable in
NMMS. All the sequents derivable by [Reflexivity] are already axioms if the
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sentence in the sequent is atomic, and one can derive them using the rules
of NMMS if the sentence is logically complex. The sequent p ∧ q � p ∧ q,
for instance, is derivable from p, q � p and p, q � q and p, q � p, q, by using
[R∧] and [L∧]; and it is easy to show that this is always possible (see
Appendix, Proposition 24). The two contraction rules are not rules of
NMMS because we are working with sets of sentences on the left and the
right side of sequents. Hence, the top sequents and the bottom sequents of
the contraction rules are identical (although this will not be true for the
calculus NMMS\ctr below). Thus, the rules for Reflexivity and Contraction
are not included because they would be redundant and we prefer not to list
them as rules.

The reason why NMMS does not include [Weakening] and [Mixed-Cut]
is very different. The [Weakening] rule encodes the constraint that reason
relations must be monotonic, and the [Mixed-Cut] rule is a generalized
version of the idea that reason relations must be transitive. These rules fail
and have counterexamples inNMMSwhenwe codify open reason relations,
assuming that our sequent rules ought to extend the base consequence
relation in a conservative way, that is, assuming that if all the sentences
in Γ and ∆ are in the base lexicon, then Γ ∼ ∆ just in case Γ ∼

B
∆

(see below). For [Weakening], a base consequence relation that is such
that p ∼

B
q but p, r ≁

B
q is a counterexample. And [Mixed-Cut]

actually implies [Weakening], given Containment, and so it yields to the
same counterexample. To see this, suppose again that p ∼

B
q. Now, by

Containment, p, q, r,∼
B

q. And so [Mixed-Cut] would allow us to prove
that p, r ∼ q. Hence, we must reject [Weakening] and [Mixed-Cut] and
allow that they can fail. These failures make the consequence relations that
we shall study substructural: some of the traditional structural principles
fail in them.

Returning to the thesis of logical expressivism, note that vocabulary
that can be introduced into a language in the way in which we have just
introduced the vocabulary of propositional logic can be elaborated from
any autonomous base vocabulary, and it thus meets the first part of the
condition of logicality suggested by logical expressivism, that is, the first
part of the condition that logical vocabulary must be universally LX. For,
someone who can use any base language, in accordance with its reason
relations, already knows how to do everything they need to know how to
do in order to acquire the ability to use the vocabulary introduced in this
subsection, in accordance with its reason relations. All that such a person
needs to do is to leverage their sensitivity to reason relations among atomic
sentences to yield a sensitivity to reason relations among sentences that
include logical vocabulary in accordance with the sequent rules above.12

And we can leave it open what exactly the relevant kind of sensitivity to
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reason relations is that a speaker must have in order to be a competent
speaker of some base language. As long as this ability can be transformed
in a way that corresponds to the sequent rules above, all that a speaker
needs to do in order to acquire the ability to use logical vocabulary is
to undergo such a transformation. Crucially, this does not require any
new experience of, or familiarity with, objects or properties that are novel
to the speaker. In this sense, the potentiality of understanding and using
logical vocabulary is contained in the ability to understand and use any
autonomous vocabulary whatsoever. This is the first part of the idea that
logical vocabulary is vocabulary that is universally LX, and we have now
explained how extending a base vocabulary by means of a sequent calculus
in the way sketched above meets this first criterion of logicality.

3.1.3 Some Familiar Features of Logical Vocabulary

The result of adding logical vocabulary and specifying its reason relations
by NMMS is a radical departure from standard approaches to logic in many
ways, but it is also conventional in other ways. So let us highlight some
properties of reason relations that are extended by NMMS. We start, in this
subsection, with features that our theory shares with many familiar sequent
calculi treatments of logical vocabulary, and we will discuss the radical and
novel aspects of our theory in the next subsection.

As already intimated, the rules of NMMS are slight variations on rules
that are familiar as so-called “Ketonen-style rules” (see Negri et al., 2008;
Humberstone, 2011; Bimbó, 2015). And the rules of NMMS share the key
virtues of the Ketonen-style rules, in particular the following three: First,
the rules allow us to derive all classically valid sequents without the help
of structural rules if the base consequence relation obeys Containment.
Second, the rules are such that every sentence that occurs in any of the
top sequents of a rule application also occurs, either as a free-standing
sentence or as a subformula of a sentence, in the bottom sequent,13

and the top sequents are always all at most as logically complex as the
bottom sequent. Third, the rules are invertible, which means that if the
bottom sequent of an application of a rule is derivable, then all the top
sequents are also derivable. Let us explain these three features in a bit more
detail.

Regarding the first familiar feature of NMMS, note that if the base
consequence relation obeys Containment, then any sequent of the form
Γ, p � p, ∆, of sentences in the base lexicon, is an axiom. And it can easily
be shown that closing sequents of this form under the rules of NMMS
yields exactly the relation of classical propositional consequence, over the
extended lexicon. Since adding more sequents as axioms does not affect the
derivations of the classically valid sequents, closing any base consequence
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relation that obeys Containment under the rules of NMMS includes all the
implications of classical propositional logic.

Fact 2. If a base obeys Containment, then any implication among sentences
of L that holds in classical propositional logic also holds in ∼, that is,
CL ⊆ ∼. (Appendix, Proposition 25)

In other words, insofar as everything implies itself (with arbitrary
contexts), we agree with classical logicians regarding every classically valid
implication that it is indeed valid. And since almost all non-classical logics
are strictly weaker than classical logic,14 in that they deny the validity of
some implication that is deemed valid by classical logic, our position can
seem very classical at this point. Indeed, if we say that the “narrowly logical
part” of the logically extended consequence relation is the part that can
be derived in NMMS from just the instances of Containment, then the
narrowly logical part of our theory just is classical logic. Equivalently,
the logically good reason relations are those that hold in the logical
extensions of all base vocabularies that obey Containment. Of course,
all of the structural principles hold in the narrowly logical part of our
logically extended consequence relation; in particular, this narrowly logical
part obeys Monotonicity and Transitivity. So, while the logically extended
consequence relation of a base that obeys Containment will typically
be nonmonotonic and nontransitive, the narrowly logical part of this
consequence relation will be monotonic and transitive. In this sense, we
are offering a fully structural logic for the purpose of codifying open
reason relations, that is, reason relations that are substructural. Thus, if we
identify a logic with the narrowly logical part of a consequence relation,
then we are not offering a nonmonotonic logic, but rather a monotonic—
indeed classical—logic whose logical vocabulary allows us to make explicit
nonmonotonic consequence relations.

The consequence relations defined by NMMS are substructural in the
sense thatMonotonicity and Transitivity can fail in them, namely if they fail
in the base consequence relations that are extended by the rules of NMMS.
Sequent rules for the connectives that are equivalent in the context of
structural rules often differ in important respects in substructural settings.
The so-called multiplicative and additive rules of linear logic are perhaps
the most common rules for conjunction and disjunction in a substructural
setting, thus yielding two conjunctions and two disjunctions. Our (quasi)
Ketonen-style sequent rules use, in effect, additive rules on one side and
multiplicative rules on the other side. If our base consequence relations
obey Containment, then the differences between these rules only matter
outside of the narrowly logical part of the consequence relation. In addition
to the features of the Ketonen rules that we point out below, one important
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reason to adopt the Ketonen rules is that they allow us to respect two
plausible constraints, which we will illustrate only for conjunction (but
which have analogues for disjunction). The first constraint is that if the
addition of the premise “Tweety is a penguin” defeats the implication
from “Tweety is a bird” to “Tweety can fly,” then replacing the premise
“Tweety is a bird” with the conjunctive premise “Tweety is a bird, and
Tweety is a penguin” should not imply “Tweety can fly.” The additive
conjunction left-rule would not allow us to respect this first constraint.
The second constraint is that it can happen, for instance, that “Tweety
is a bird” implies “Tweety can fly” and “Tweety is a plastic toy” implies
“Tweety is inanimate,” but the combination of the premises “Tweety
is a bird” and “Tweety is a plastic toy” does not imply “Tweety can
fly, and Tweety is inanimate.” However, the multiplicative conjunction
right-rule would not allow us to respect this constraint. By using the
(quasi) Ketonen-style rules, we can respect both constraints. Thus, our
rules allow us to remain classical within the narrowly logical part of
the consequence relation, while also allowing us to respect the two just
stated constraints outside of the narrowly logical part of the consequence
relation.

The second familiar feature of the rules of NMMS is that in moving
towards the root on any branch of a proof tree, the sequents never get
logically less complex15 and never fail to include a sentence (embedded or
otherwise) that already occurred in any sequent in the branch. Thus, in
building a proof tree we compose the root sequent out of all and only the
material (that is, atomic sentences) provided by the leaves of the tree. This
feature is not only very useful for proving results about sequent calculi,
it also lets us see how logically complex sequents derive from our base
consequence relation. Moreover, it is an immediate consequence of this
feature that the logical extension of any base vocabulary by NMMS is
conservative: if all the sentences in Γ and ∆ are in our base lexicon LB,
then Γ ∼ ∆ just in case Γ∼

B
∆.

Fact 3. The extension of any consequence relation∼
B

to ∼ by NMMS is
a conservative extension: if Γ ∪ ∆ ⊆ LB, then Γ ∼ ∆ just in case Γ ∼

B
∆.

(Appendix, Proposition 26)

This is an important fact from the perspective of logical expressivism
because if logical vocabulary has the function of making explicit reason
relations in a base vocabulary, then its introduction into the language
should not add or subtract any reason relations that hold between sentences
of the base language. Logical vocabulary should make explicit and not
change the reason relations with which we started. That our way of adding
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logical vocabulary is a conservative extension of our base consequence
relation ensures this.

The third familiar feature of NMMS is that the rules are invertible (see
Appendix, Proposition 27). That means that we can move from the bottom
sequent of a rule application to any of the top sequents. If, for instance,
we know that A ∨ B � C is derivable, then we may conclude that A � C is
derivable, by applying the inverted rule [L∨]. This use of the rule is not
itself a derivation, but it is nevertheless the case that the bottom sequent of
an application of [L∨] is derivable only if each top sequent is derivable.
This is usually expressed by saying that the inverted rule is admissible
but not derivable. All the rules of NMMS are invertible in this sense. The
invertibility of our rules has many consequences, such as the following,
of which we already know the first two as conditions of adequacy for
expressivist logical theories from the previous chapter:

Deduction-Detachment (DD) Condition on Conditionals:
Γ ∼ A → B if and only if Γ, A ∼ B.

Incoherence-Incompatibility (II) Condition on Negation:
Γ ∼ ¬A if and only if Γ, A ∼ if and only if Γ#A.

Antecedent-Adjunction (AA) Condition on Conjunctions:
Γ, A ∧ B ∼ ∆ if and only if Γ, A, B ∼ ∆.

Succedent-Summation (SS) Condition on Disjunctions:
Γ ∼ A ∨ B, ∆ if and only if Γ ∼ A, B, ∆.

Thanks to the invertibility of the rules ofNMMS, our theory underwrites all
of these conditions. As we will see in the next section, that these conditions
all hold in our theory is one sense in which the logical vocabulary that
is introduced by the rules of NMMS allows us to make explicit reason
relations.

To sum up, given any base consequence relation that obeys Containment,
its logical extension includes all classically valid implications, it is a
conservative extension of the base consequence relation, and it obeys the
Deduction-Detachment, the Incoherence-Incompatibility, the Antecedent-
Adjunction, and the Succedent-Summation Conditions.

3.1.4 Radical Novelties

In the previous subsection, we have seen that our logical extensions of base
consequence relations yield results that are familiar in many ways. Let us
now turn to the ways in which our theory is new and unusual—indeed,
radically so.
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Our account is designed to capture reason relations that are open in
the sense that they do not obey structural rules like Monotonicity and
Transitivity, that is, the rules of [Weakening] and [Mixed-Cut]. A base
consequence relation may, for instance, plausibly include and not include,
respectively, the following implications, which are jointly an example of
failure of Monotonicity (in which we label premises and conclusions in
square brackets as we go along, for future reference)16:

(1) [p] Tara is a human being. ∼
B

[q] Tara’s body temperature is 37 degrees
Celsius.

(2) [p] Tara is a human being. [r] Tara has a fever. ≁
B

[q] Tara’s body
temperature is 37 degrees Celsius.

Here (1) is a good implication, but it is defeated by the additional premise
that Tara has a fever. We may call such a premise a “defeating premise” or
a “defeater.” Of course, one might object that (1) is not a good implication
because the truth of the premise does not guarantee the truth of the
conclusion, as is brought out by (2). Such an objection is, however, merely a
way to express the unwillingness to consider the possibility of open reason
relations. Once we reject logicism about reasons, it is hard to see what
could justify such an unwillingness. So we set this worry aside.

Note that monotonicity may fail not only for implications, or reasons-
for, but also for incompatibilities, or reasons-against. Here is an example
that we might want to include in our base consequence relation.

(3) [s] This figure is a triangle. [t] The sum of the inner angles of this figure
is larger than two right angles. ∼

B

(4) [s] This figure is a triangle. [t] The sum of the inner angles of this figure
is larger than two right angles. [u] This figure is a spherical triangle. ≁

B

Here we have two sentences that are incompatible by themselves, but they
become compatible in the presence of the additional sentence that the figure
in question is a spherical triangle. We may also express this phenomenon
by saying that the incoherence of the set of the first two sentences is cured
by the addition of the third sentence.

Moreover, such examples of nonmonotonicity can be turned into
examples in which transitivity fails.17 In particular, if we look at a sentence
that is close in its meaning to the negation of the defeating premise and
also close to the defeated conclusion, we can construct counterexamples to
transitivity by considering these sentences as conclusions. For our purposes
the sentences “Tara does not have a fever” and “Tara is healthy” are close
enough to allow us to construct the following example:
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(5) [p] Tara is a human being. ∼
B

[q] Tara’s body temperature is 37
degrees Celsius.

(6) [p] Tara is a human being. [q] Tara’s body temperature is 37 degrees
Celsius. ∼

B
[v] Tara is healthy.

(7) [p] Tara is a human being. ≁
B

[v] Tara is healthy.

If we were allowed to apply [Mixed-Cut], we could derive (7) from (5)
and (6). But while (5) and (6) are intuitively good implications, it seems
implausible that if we are committed to accept that Tara is a human being,
we cannot be entitled to reject that Tara is healthy, that is, (7) is intuitively
not a good implication. Hence, we have an intuitive counterexample to
[Mixed-Cut].

We can also apply this strategy to failures of monotonicity among
incompatibilities, if we have sentences that behave closely enough to
negations of the sentences in our example of monotonicity failures. Here is
how we can apply this to the example (3)-(4) above:

(8) [s] This figure is a triangle. ∼
B

[w] The sum of the inner angles of this
figure is equal to two right angles.

(9) [s] This figure is a triangle. [w] The sum of the inner angles of this
figure is equal to two right angles. ∼

B
[x] This figure is a Euclidean

plane triangle.

(10) [s] This figure is a triangle. ≁
B

[x] This figure is a Euclidean plane
triangle.

Perhaps an opponent would want to say that (10) is indeed a good
implication because a triangle is by definition a plane figure and a spherical
triangle is, hence, not a triangle. Or an opponent might object that as long
as we count spherical triangles as triangles, implication (8) is not a good
implication. Of course, it is useful in mathematics to have exact definitions
that work in ways that underwrite such objections. But that just means that
it is useful in mathematics to have exact definitions that allow our reason
relations to be monotonic. We wholeheartedly agree with that. Nothing
here hangs on any particular example, and the way we use “triangle” in
our example is the way in which spherical triangles are neither excluded
nor prominent enough in the concept expressed by “triangle” to undermine
the defeasible implication (8), which we take to be the everyday use of the
term that is regimented in exact ways in mathematics.18

The aspect of our theory that is probably most radical and new is that
we take examples like those just given at face value and include them in
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our consequence relations. We do not try to reconstruct them, on the basis
of a monotonic logic, with the help of default rules or partial orderings
of models, like prominent approaches to nonmonotonic logics do. Rather,
we take the collection of all implications among atomic sentences, those of
the examples just given included, as our base consequence relation and we,
thus, treat them as axioms of NMMS.

As a toy example, we can do this for the implications above. To do so, we
treat the sentences p,...,x as the only atomic sentences of our base lexicon,
and we say that our base consequence relation are exactly the implications
described as good above plus all instances of Containment. We may call
this base T (for “toy”) and specify it thus:

LT = {p, q, r, s, t, u, v, w, x}
∼
T

= {⟨{p}, {q}⟩ , ⟨{s, t}, ∅⟩ , ⟨{p, q}, {v}⟩ , ⟨{s}, {w}⟩ ,
⟨{s, w}, {x}⟩} ∪ {⟨Γ, ∆⟩ : Γ ∪ ∆ ⊆ LT and Γ ∩ ∆ ̸= ∅}

The part of the definition of ∼
T

that comes after the first union sign ensures
that ∼

T
obeys Containment. So, it follows from our observations above that

the logical extension of this base includes all classically valid inferences
(over the language that results from adding the logical lexicon to LT).
In addition to these classically valid implications, however, ∼

T
and its

logical extension ∼ include the implications that correspond to (1), (3),
(6), (8), and (9) above. And because the extension is conservative, neither
consequence relation includes the implications that correspond to (2), (4),
(7), or (10).

In addition to the implications of our base consequence relation, the
logically extended consequence relation includes implications of logically
complex sentences that make explicit the good implications of (1), (3),
(6), (8), and (9) above, which we may label with the subscript e for
“explicitation”: (1e) ∼ p → q, (3e) ∼ ¬(s ∧ t), (6e) ∼ (p ∧ q) → v,
(8e) ∼ s → w, (9e) ∼ (s ∧ w) → x. The sentences on the right in
these implications are all theorems of the logically extended consequence
relation, in the sense of being implications of the empty set. None of them
is, however, a theorem of classical logic. Rather, that these sentences are
theorems of the extended consequence relation makes explicit what implies
what and what is incompatible with what in our base consequence relation.
For example, (1e) makes explicit, in the form of a theorem, that p implies
q. And (3e) makes explicit, in the form of a theorem, that s and t are
incompatible.

Let us highlight, as a side remark, that what matters here is not the
status of these sentences as theorems. As will become clearer below, these
sentences could play their explicitating role equally well in the context
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of other premises and conclusions. And more generally, the notion of a
theorem, as a sentence that follows from the empty set, loses much of
its interest once we allow that the sentence may not follow from other
premises. The more interesting notion is that of a sentence that follows
from all premise-sets. Given a base that obeys Containment, this is true in
NMMS of all the theorems of classical logic; but a logical extension can also
include other sentences of which this is true. We may call such sentences
“persistent theorems.” We will return to the issue of persistence in the third
section of this chapter. At present, we can ignore it and simply note that the
theorems in the logically extended vocabulary that are listed above reflect
material reason relations that hold in our base consequence relation.

Many familiar principles fail outside of the narrowly logical part of the
logically extended consequence relation. The examples from above show
that [Weakening] (MO) and [Mixed-Cut] (CT) fail:

MO-failure-1: p ∼ q. But p, r ≁ q.

MO-failure-2: s, t ∼. But s, t, u ≁.

CT-failure-1: p ∼ q. And p, q ∼ v. But p ≁ v.

CT-failure-2: s ∼ w. And s, w ∼ x. But s ≁ x.

A moment’s reflection shows that what is sometimes called “meta-modus-
ponens” can also fail in the logical extensions of base consequence
relations. Meta-modus-ponens says that if ϕ is a theorem and ϕ → ψ is
a theorem, then ψ is a theorem. Now, we can change our examples of
failures of CT by replacing the premise of the first implication by the empty
set, which yields sequents of the form ∼ ϕ, and ϕ ∼ ψ. But ≁ ψ. Since
ϕ ∼ ψ if and only if ∼ ϕ → ψ, cases of this schematic form are cases
in which meta-modus-ponens fails. Note, moreover, that such failures can
occur despite the fact that, as a classically valid schema, all instances of
modus ponens hold, that is, all instances of ϕ, ϕ → ψ ∼ ψ hold and, indeed,
they are all indefeasible, that is, all results of applications of [Weakening] to
such instances also hold. In other words, if the premises of amodus ponens
inference are merely implied, then the conclusion of themodus ponens does
not follow; but if the premises are explicitly contained in the premises, then
the conclusion follows.

In order to highlight how radically our theory diverges from traditional
theories outside of the narrowly logical part of the extended consequence
relations, let us look at one last example that combines failures of CT, meta-
modus-ponens, and distribution principles as substitution rules. Suppose
we have a base consequence relation that obeys Containment and that
includes the following implications: ∼

B
p; ∼

B
q, r; ∼

B
p, q, r. Let us also
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stipulate, however, that it is not the case that ∼
B

p, r. These implications
allow us to construct the following proof tree.

� p
� q, r

[R∨]� q ∨ r
� p, q, r

[R∨]� p, q ∨ r
[R∧]� p ∧ (q ∨ r)

Hence, we have ∼ p ∧ (q ∨ r). Furthermore, the following is a classical
valid implication and hence part of our logically extended consequence
relation: p ∧ (q ∨ r) ∼ (p ∧ q) ∨ (p ∧ r) and ∼ (p ∧ (q ∨ r)) → ((p ∧ q) ∨
(p ∧ r)). However, our extended consequence relation does not include the
sequent ∼ (p ∧ q) ∨ (p ∧ r). To see this, consider what a proof tree of this
sequent would look like. We would have to derive �(p ∧ q), (p ∧ r), which
requires in turn that we derive �p, (p∧ r). And a derivation of that sequent
would have to look as follows:� p, p � p, r � p, p, r

[R∧]� p, p ∧ r

Since the middle top sequent of this rule application contains only atomic
sentences, it holds just in case ∼

B
p, r. But we know that ≁

B
p, r. Hence,

≁ (p ∧ q) ∨ (p ∧ r). This example illustrates, firstly, that CT and meta-
modus-ponens can fail in our logically extended consequence relation, as
we have already seen above. Secondly, the example illustrates that replacing
classically equivalent sentences for one another in an implication can turn
a good implication into a bad implication. For p ∧ (q ∨ r) and (p ∧ q) ∨
(p ∧ r) are classically equivalent sentences, but while ∼ p ∧ (q ∨ r) holds
in our example ∼ (p ∧ q) ∨ (p ∧ r) does not hold. And to fully appreciate
this point, note that the sentences are not just classically equivalent but they
also imply each other in the extended consequence relation in which their
substitution as conclusions fails.19

To sum up, we have seen in the previous subsection that the logical
extensions of base consequence relations that result from applying the rules
of NMMS yield results that are familiar and unsurprising in many ways, for
instance, by including all classically valid implications. In this subsection,
we have seen how radically these logically extended consequence relations
diverge from standard treatments of logical vocabulary. These consequence
relations can encode open reason relations and, therefore, they are
substructural, allowing for failures of Monotonicity and Transitivity. They
include implications and theorems that arematerial in the sense of not being
logically valid or logically true, respectively. Principles like meta-modus-
ponens can fail in such extended consequence relations, even thoughmodus
ponens holds indefeasibly. And substituting sentences that imply each other
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in classical logic (and so also in our logical extensions) for one another
in an implication can turn a good implication into a bad one, that is,
such substitutions are not guaranteed to preserve consequence. All of
these unfamiliar and radical features of our logically extended consequence
relations are a result of including nonlogical, material implications in these
consequence relations, in particular substructural material implications. In
other words, all of these features are consequences of the ability to codify
material and open reason relations.

3.2 Making Reason Relations Explicit

In the previous section, we have seen how we can extend reason relations
among sentences of an atomic base language to reason relations among
the logical extension of that language. Thus, we have seen how logical
vocabulary can be elaborated from arbitrary material reason relations.
This was the first part of the central claim of logical expressivism, namely
the claim that logical vocabulary is universally LX. The second part—the
X-part—of this claim is that logical vocabulary allows its users to make
explicit the reason relations that hold in the base vocabulary as well as
those that hold in the logically extended vocabulary. In this section, we
want to clarify what it means for a vocabulary to allow us to make reason
relations explicit. Doing this will also give us occasion to introduce some
extensions and variants of the sequent calculus NMMS.

3.2.1 The Idea of Making Reason Relations Explicit

The basic idea of making reason relations explicit is to turn something
that one acknowledges in practice into something that one acknowledges
explicitly in what one says. It is a genus of the species of explicitation that
takes as its starting point a practical ability, such as cooking or playing
a musical instrument, and yields as its result sentences that convey the
norms or rules that govern the exercise of the abilities, such as a recipe
for a dish or instructions for playing an instrument. If one can cook well
or play a musical instrument well, one has the ability to acknowledge the
norms or rules of cooking or playing the instrument in one’s practice by
non-accidentally acting in accordance with them. When one formulates
this practical knowledge of the norms or rules as sentences of a recipe or
instructions, one acknowledges them explicitly. One makes these norms or
rules explicit. Someone can have the ability to acknowledge such norms
or rules in practice without having the ability to make them explicit in
the form of principles. And someone might be able to convey such norms
or rules explicitly while being much less able to acknowledge them in
the practical sense of acting non-accidentally in accordance with them.
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The ability to make explicit what one acknowledges in one’s practice is
crucial for engaging in critical reflection and discussion of what the correct
norms or rules governing the activity in question are. If we want to engage
in critical reflection and discussion about what it is to cook well or to
play an instrument well, for instance, we must be able to make explicit
what someone who cooks well or plays an instrument well acknowledges
practically in what they do.

According to logical expressivism, there is a particular species of the
genus of explicitation for which the ability at issue is the ability to assess
and respond to reasons for and against claims, which wemay call the ability
to practically appreciate reason relations. This species of explicitation takes
as its starting point the ability to practically appreciate reason relations
and yields as its result sentences that convey the norms or rules that govern
the practice of practically appreciating reason relations. It makes explicit
reason relations. It gives us sentences that allow us to convey what is a
reason for or against what. And just as making the abilities to cook or to
play an instrument explicit allows us to engage in critical reflection and
discussion about exercises of the abilities to cook or play an instrument,
so making explicit reason relations allows us to engage in critical reflection
and discussion about exercises of the ability to practically appreciate reason
relations. According to logical expressivism, it is the essential function of
logical vocabulary to provide us with sentences that allow us to do this, that
is, sentences that make explicit what is a reason for or against what. Using
logical vocabulary, reason relations of implication and incompatibility
can be made explicit in claims, and so can themselves be challenged and
defended.

One special feature of the species of explicitation that uses logical
vocabulary is that the activity of practically appreciating reason relations
and the activity of engaging in critical reflection and discussion regarding
reason relations are the same kind of activity. For engaging in critical
reflection and discussion is one way to engage in practically appreciating
reason relations. Hence, we are here dealing with the possibility that
exercises of our conceptual abilities make explicit the norms or rules
that govern exercises of these very conceptual abilities. In this sense, the
explicitation that is at issue in logic is a case in which our conceptual
abilities are directed at themselves; it is a kind of self-consciousness.

A related second special feature of this species of explicitation is that
it happens in the same language in which the explicitated practical
appreciation of reason relations takes place. When we make reason
relations explicit by using logical vocabulary, we do not use an overt meta-
language in which we make explicit reason relations among sentences of
an object-language. When we assert, for instance, the sentence A → B
and treat it as undeniable (relative to a given context), we are not saying
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that A is a reason for B (relative to the context). Rather, we say that
A → B; but what we do in saying this is to commit ourselves to A being
a reason for B (relative to the context). Thus, logical expressivism must
not be misunderstood as primarily being a claim about what logically
complex sentences say. Rather, it is primarily a claim about what we
can do with logically complex sentences, namely to make explicit reason
relations. This essential role of logically complex sentences constrains
their inferential roles. And according to semantic inferentialism, we can
understand the content of logically complex sentences in terms of their
inferential roles. Nevertheless, according to logical expressivism, logically
complex sentences do not mention but use their constituent sentences; and
to assert a logically complex sentence is not to describe some reason relation
as holding, but to endorse the reason relation that the sentence makes
explicit.

Moreover, according to logical expressivism, logic has a special status
among all intellectual pursuits in general and in philosophy in particular.
Logic is universal in its scope in that (ideally) it allows us to make
explicit any reason relations whatsoever. And these reason relations are
what we appreciate in practice in any intellectual pursuit. To be self-
conscious about any intellectual pursuit is to be able to engage in critical
reflection and discussion about it. So, the ability to engage in logic
and use logical vocabulary is an aspect of our self-consciousness; it is
the ability to engage in critical reflection and discussion regarding any
intellectual pursuit whatsoever. Philosophy is not only crucially concerned
with what is a reason for or against what in many particular domains, but
critical reflection and discussion of the reason relations that are practically
appreciated in doing philosophy are essential to philosophy itself. In this
sense, philosophy is an essentially self-conscious intellectual pursuit. And
logic studies the vocabulary by which we can manifest this kind of self-
consciousness. Thus, logic has a special position with respect to philosophy
in particular, because it studies and enables us critically to control the use
of the vocabulary that allows us to engage in philosophy self-consciously,
that is, to do philosophy with the ability to engage in critical reflection
and discussion regarding philosophy. And this ability is an essential part of
philosophy, and indeed of any sophisticated intellectual pursuit at all.

We can now see that our question about what it means to make reason
relations explicit is really asking what we need in order to engage in critical
reflection and discussion regarding reason relations, and so the meanings of
our nonlogical words.We argued in the previous chapter that at a minimum
this requires that we have a conditional that obeys DD and a negation that
obeys II. And we saw in the previous section that the logical vocabulary
introduced by NMMS meets these desiderata. We can now spell out the
idea of explicitation that lies behind DD and II. It turns out that this can be
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done in two different ways. We discuss the first of these ways in the next
subsection and then turn to the second way to spell out the idea.

3.2.2 Explicitation by Implication

Let us look at a schematic example of a case where the explicitating
function of logical vocabulary becomes relevant. Suppose my, of course
fallible, ability to practically appreciate reason relations includes a
disposition to practically treat A as a reason for B and to treat A together
with B as a reason against C. Thus, we may say that in my exercises of the
ability to appreciate reason relations, I act as if A ∼ B and as if {A, B}#C,
that is, as if A, B, C ∼ . Suppose that neither of us is willing to accept or
reject any of A, B, or C. However, you are not willing to treat A, supposing
we accepted it, as a reason for B, nor are you willing to treat A together
with B as a reason against C. For you, these three sentences have nothing to
do with one another, as far as reason relations go. Finally, suppose that we
have (and take ourselves to have) shared background commitments, namely
we accept everything in Γ and we reject everything in ∆. What would we
need in order to start to discuss and reflect on our disagreement?

Note that we cannot engage in any critical discussion or reflection by
wondering about A or B or C directly. For we want to engage in critical
reflection about what we would have reason to accept or reject before and
independently of engaging in any particular ground-level commitments.
We would have some way forward, however limited it may be, if there
were a sentence such that treating this sentence as undeniable covaried
with treating A as a reason for B and if there was another sentence such
that treating that sentence as undeniable covaried with treating A together
with B as a reason against C. It is easy to see that, according to NMMS,
Γ, A ∼ B, ∆ if and only if Γ ∼ A → B, ∆; and we have Γ, A, B, C ∼ ∆
if and only if Γ ∼ ¬(A ∧ B ∧ C), ∆. So, the logically complex sentences
A → B and ¬(A ∧ B ∧C) fit the bill, respectively. Given my dispositions to
acknowledge reason relations in practice, I have to treat these sentences as
undeniable, relative to our shared background commitments, whereas you
will refuse to treat them as undeniable. If we have the ability to dispute
and reflect on whether a sentence is undeniable, we now have sentences
that can serve as the targets in our disagreement. In this sense, the sentence
A → B allows us to make explicit that A is a reason for B, and the sentence
¬(A ∧ B ∧ C) allows us to make explicit that C is incompatible with A
together with B—and thereby bring these reason relations within reach of
our critical practices of challenging and defending claims.

In order to serve as the target of our dispute, what matters is not whether
you or I accept A → B. Rather, what matters is whether we treat rejecting it
as ruled-out, as out-of-bounds, that is, whether we treat it as if one cannot
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be entitled to such a rejection. In other words, what matters is whether we
treat our background commitments as providing reasons for A → B. I will
do so, and you won’t. We can now engage, in effect, in a critical discussion
about whether A is a reason for B by examining our shared background
commitments and highlight the aspects that we take to be relevant to us
having reasons for A → B. Similarly, what matters for our ability to engage
in a critical debate about whether A together with B is a reason against C
is not whether either one of us accepts ¬(A ∧ B ∧ C). Rather, what matters
is whether we treat it as undeniable, that is, whether we take our shared
background commitments to provide reasons for ¬(A ∧ B ∧ C). I will do
so, and you won’t.

This is explicitation by implication. It must not be confused with the
explicitation of implications that we mentioned in the previous chapter,
where what is implied by a set of premises is added to these premises as a
further premise. Explicitation by implication, by contrast, does not involve
turning a conclusion into a premise. Rather, in explicitation by implication,
we start with a particular reason relation. And according to this conception
of explicitation, what it takes to make explicit a particular reason relation
is to have a sentence that is undeniable just in case the reason relation
indeed holds. That is, the reason relation holds if and only if the sentence
is implied by the background commitments, against which we want to
assess the particular reason relation at issue. We can summarize the general
format of this kind of explicitation of reason relations in the following
definition:

Definition 4 (Making Reason Relations Explicit by Implication).
(For) The sentence ϕ makes explicit that Θ is a reason for Λ if and only
if, for all Γ and ∆, we have Γ ∼ ϕ, ∆ just in case Γ, Θ ∼ Λ, ∆.
(Against) The sentence ϕ makes explicit that Θ is a reason against Λ if
and only if, for all Γ and ∆, we have Γ ∼ ϕ, ∆ just in case Γ, Θ, Λ ∼ ∆.

It is easy to see that NMMS introduces logical vocabulary that allows
us to make explicit by implication any reason relations among finite sets.
To see this, let’s write

∧{x1, ..., xm} for x1 ∧ ... ∧ xm and
∨{x1, ..., xm} for

x1 ∨ ...∨ xm . Now, by DD, AA, and SS above, for any pair of non-empty sets
Θ and Λ, it is easy to see that Γ, Θ ∼ Λ, ∆ if and only if Γ ∼ ∧

Θ → ∨
Λ, ∆.

So, for any (finite) Θ and Λ, the sentence
∧

Θ → ∨
Λ makes explicit

that Θ is a reason for Λ, in the sense of (For). Similarly, by AA and II,
we have Γ, Θ, Λ ∼ ∆ if and only if Γ ∼ ¬∧

Θ ∪ Λ, ∆. Hence, for any
finite Θ and Λ, the sentence ¬∧

Θ ∪ Λ makes explicit that Θ is a reason
against Λ, in the sense of (Against). We can summarize this result in the
following fact.



126 Introducing Logical Vocabulary

Fact 5. For any two finite sets of sentences, from the extended language
L for any base B, the logically extended lexicon of that base includes
sentences that make explicit by implication when the relation of being a
reason for and when the relation of being a reason against holds between
the two sets. (Appendix, Proposition 28)

This fact is one sense in which the vocabulary introduced with the help of
NMMS is universally explicative of reason relations. For any autonomous
base vocabulary, once we extend it to include logical vocabulary, we can
make explicit by implication every reason relation among arbitrary finite
sets of sentences.

We have now reached our aim of showing that the logical vocabulary
of NMMS is universally LX. As shown in the previous section, the logical
vocabulary of NMMS can be elaborated from any autonomous base
vocabulary. And as just shown, it allows its users to make explicit arbitrary
reason relations among sentences of any autonomous base vocabulary and
its logical extension. This means that defining logical expressions for a
given base vocabulary by the rules of NMMSmeets the desiderata of logical
expressivism.

We can now see what it means to adopt logical expressivism and
to understand logic as the discipline that studies the vocabulary that
universally allows us tomake explicit what is a reason for and against what.
If we use “conceptual self-consciousness” for the ability to be explicit about
the exercises of one’s own conceptual abilities and this means to make
explicit the reason relations that constrain these exercises of conceptual
abilities, then logic is the discipline that studies the vocabulary that allows
us to manifest conceptual self-consciousness. Logic thus understood studies
the tools that allow us to engage in critical reflection and discussion of
the appreciation of reason relations of any kind whatsoever, including
open reason relations. This is the conception of logic that animates logical
expressivism, and the theory that we have developed in this chapter
illustrates how one can formulate a logical theory based on this conception
of logic. Thus, we have now put on the table a formally rigorous proposal
for how to understand logical expressivism, and how to do logic in a way
that is informed and guided by logical expressivism.

3.2.3 Explicitation by Sequents

Besides explicitation by implication, there is also a second and related way
to spell out what it means to make reason relations explicit. The idea is
that logical vocabulary makes reason relations explicit in the sense that
any implication that involves logically complex sentences as premises or
conclusions holds only if and because some definite implications among
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only atomic sentences hold. In this subsection, we explain and explore this
way to understand the idea that logical vocabulary makes reason relations
explicit.

The second way to understand the idea that logical vocabulary makes
explicit reason relations is to understand it as saying that all reason
relations among logically complex sentences reflect or express reason
relations among atomic sentences in a unique way. According to this way of
understanding the idea, it is not a sentence that is implied by some premises
that makes explicit reason relations. Rather, it is an entire implication
that makes explicit particular reason relations among the base vocabulary.
The idea is that every derivable sequent is, as it were, a projection of
reason relations among sentences of the base vocabulary. On this way of
thinking, for instance, the implication p ∼ q → r, s makes explicit that the
base consequence relation includes the implication p, q ∼ r, s. The former
implication is a projection of the latter; and note that a sequent featuring
logically complex sentences might, in this sense, represent a collection of
implications in the base. Let’s call this “Explicitation by Sequents.”

Definition 6 (Making Base Reason Relations Explicit by One Sequent).
Let AtomicImp ⊆∼

B
be a set of implications in the base consequence

relation. Then the sequent Γ � ∆ makes explicit (by one sequent) the
collection of reason relations AtomicImp = {Θ1 ∼

B
Λ1, ..., Θn ∼

B
Λn}

if and only if (Γ ∼ ∆ just in case Θ1 ∼
B

Λ1, and ..., and Θn ∼
B

Λn).

The logical vocabulary of NMMS is such that for every implication in
the extended consequence relation, there is a unique set of implications in
the base consequence relation that it makes explicit in this sense. For the
invertibility of the rules of NMMS ensures that the following holds:

Theorem 7 (Projection). For any sequent Γ � ∆, with Γ ∪ ∆ ⊆ L,
there is a unique set AtomicImp of base vocabulary sequents such that
Γ � ∆ is derivable in NMMSB just in case AtomicImp ⊆∼

B
. (Appendix,

Proposition 29)

This means that every implication among sentences in the logically
extended vocabulary makes explicit (by one sequent) a collection of reason
relations in the base vocabulary. To put it differently, every sequent
featuring logically complex vocabulary reflects a unique set of sequents
featuring only atomic sentences: the complex sequent holds just in case all
the atomic sequents hold.

It follows that for any set, ComplexImp, of sequents in the logically
extended language, there is a unique set, AtomicImp, of sequents in
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the nonlogical base vocabulary such that all the complex sequents in
ComplexImp hold if and only if all the base sequents in AtomicImp

hold. Moreover, this relation does not depend on what other sequents
hold in the base or the extended vocabulary. Rather, this relation holds
among the sets ComplexImp and AtomicImp for all base vocabularies and
extensions. Hence, the set of complex sequents ComplexImp makes explicit
(by sequents) the set of base sequents AtomicImp independently of what
we choose as our base vocabulary. That Projection holds means that
the logical vocabulary of NMMS can make arbitrary nonlogical reason
relations explicit by sequents, in this sense. This is a second sense, beside
explicitation by implication, in which the logical vocabulary of NMMS is
universally explicative of reason relations. We take these two senses of
being universally explicative—namely the sense of making arbitrary reason
relations explicit by implication and by sequents—to be the two senses of
being universally explicative that are central to logical expressivism.

We can now ask whether the converse is also true, that is, whether
every set of implications in the base vocabulary is represented by a single
implication in the logically extended consequence relation. Unfortunately,
such a strong representation relation does not hold in NMMS. There are
collections of base vocabulary implications that cannot be made explicit
by a single sequent in the extended consequence relation. To see why,
suppose that p ∼ q and r ∼ s but p, r ≁ q, s. We can make the first two
implications explicit by ∼ p → q and ∼ r → s. But we cannot combine
these two implications into a single implication. For, in order to derive�(p → q) ∧ (r → s), we would need not only �p → q and �r → s but also�p → q, r → s. And the derivation of the latter sequent would require that
p, r � q, s is derivable, which it is not because p, r ≁ q, s.

We could avoid such cases by requiring that base consequence relations
are closed under the following rule, which we may call “Mingle-Mix”:
if Γ ∼ ∆ and Θ ∼ Λ, then Γ, Θ ∼ ∆, Λ. If base consequence relations
must obey Mingle-Mix, then it cannot happen that p ∼ q and r ∼ s but
p, r ≁ q, s. Unfortunately, Mingle-Mix is not plausible in a nonmonotonic
setting. It seems plausible, for instance, that “The patient has symptom
X” implies “The patient has disease XX” and “The patient has symptom
Y” implies “The patient has disease YY”; but “The patient has symptoms
X and Y” does not imply “The patient has disease XX or YY” (because
the combination perhaps strongly suggests that the patient has disease
ZZ). However, if we want to allow that Mingle-Mix fails in material
consequence relations, then there are collections of implications in base
consequence relations that cannot be made explicit by one single sequent
in NMMS.

While this is a limitation of NMMS as formulated above, we can tweak
our theory in such a way that our logical vocabulary is explicative of any
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collections of reason relations by one sequent. To do so, we must reject
Contraction, that is, the principle that Γ, ϕ ∼ ∆ just in case Γ, ϕ, ϕ ∼ ∆
and that Γ ∼ ϕ, ∆ just in case Γ ∼ ϕ, ϕ, ∆. Hence, we must work with
multi-sets of sentences instead of sets of sentences. If we do that, we get the
desired result if we change our sequent rules to the more familiar Ketonen-
style rules, which are the following (marking the tweaked connectives by
adding a bar above them):

Γ � ∆, A B, Γ � ∆
[L→̄]

Γ, A→̄B � ∆
Γ, A � B, ∆

[R→̄]
Γ � A→̄B, ∆

Γ, A, B � ∆
[L∧̄]

Γ, A∧̄B � ∆
Γ � ∆, A Γ � ∆, B

[R∧̄]
Γ � ∆, A∧̄B

Γ, A � ∆ Γ, B � ∆
[L∨̄]

Γ, A∨̄B � ∆
Γ � ∆, A, B

[R∨̄]
Γ � ∆, A∨̄B

The negation rules and the rules with just one top sequent remain the same
as in NMMS. We call the sequent calculus that results from this change
NMMS\ctr. To see that the logical vocabulary ofNMMS\ctr canmake explicit
by implication arbitrary particular reason relations, it suffices to note that
DD, II, AA, and SS all hold in NMMS\ctr. Hence, the logical vocabulary
of NMMS\ctr can make individual reason relations explicit by implications
in the same way as the vocabulary of NMMS. However, in NMMS\ctr

we can combine the results of such explicitation into a single sequent.
For example, because of [R∧̄], if �p→̄q and �r→̄s are both derivable,
then so is �(p→̄q)∧̄(r→̄s), and vice versa. Thus, the limitation regarding
explicitation of collections of reason relations by sequents that arose for
NMMS does not arise for NMMS\ctr. And in general, the logical vocabulary
of NMMS\ctr is such that, for any (finite) collection of reason relations
among (finite) sets, there is a sequent that makes exactly those reason
relations explicit.20

Proposition 8. For any finite set, AtomicImp, of sequents among atomic
sentences, there is a sequent Γ � ∆, with Γ ∪ ∆ ⊆ L, such that Γ � ∆ is
derivable in NMMS

\ctr
B just in case AtomicImp ⊆∼

B
.

This result allows us to formulate a representation theorem for
NMMS\ctr. For we can now see that in NMMS\ctr every finite set,
AtomicImp, of implications in the base consequence relation is represented
by a single sequent in the logically extended consequence relation, and
every implication in the logically extended consequence relation represents
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a unique set of implications in the base consequence relation. Moreover,
there is a unique set, ExtImp, of sequents in the logically extended
consequence relation that represent a given set, AtomicImp, of implications
in the base consequence relation. So, for any sequent in ExtImp it holds
just in case all the sequents in AtomicImp hold. This yields the following
representation theorem:

Theorem 9 (Representation). For every finite set, AtomicImp, of sequents in
the base vocabulary ofLB there is a set of sequents, ExtImp, in the extended
vocabulary of L introduced by NMMS

\ctr
B , such that, for every sequent in

ExtImp, it holds if and only if all the sequents in AtomicImp hold.

This theorem tells us that the logical vocabulary introduced byNMMS\ctr

is explicative of reason relations in the sense that not only does every
sequent featuring logical vocabulary reflect a collection of reason relations
in the base consequence relation but also every finite collection of reason
relations in the base vocabulary can be represented in a single sequent that
features logical vocabulary.

The price one has to pay in order to have logical vocabulary that is
universally explicative in the stronger sense of making arbitrary finite
collections of reason relations explicit and, hence, underwriting the
representation theorem just stated is that one must reject contraction and,
thus, allow that whether or not some premises imply some conclusions
may depend on how many times a premise or conclusion occurs in the
implication. We will mostly work with NMMS and assume contraction
(by working with sets), thus being content with the explicative power of
Projection without Representation. We will, however, occasionally discuss
the option of rejecting contraction and use NMMS\ctr instead of NMMS.

Moreover, we should acknowledge that there is another sense in which
the logical vocabulary of NMMS may be thought to fail to make explicit
reason relations. For, one may distinguish between weak and strong
representation of the reason-for relation by saying that ϕ weakly represents
that Θ is a reason for Λ if and only if, for all Γ and ∆, we have Γ ∼ ϕ, ∆
just in case Γ, Θ ∼ Λ, ∆. But ϕ strongly represents that Θ is a reason for Λ
if and only if, for all Γ and ∆, we have Γ ∼ ϕ, ∆ just in case Γ, Θ ∼ Λ, ∆
and, also, Γ ∼ ¬ϕ, ∆ just in case Γ, Θ ≁ Λ, ∆. Given this terminology, the
conditional ofNMMS andNMMS\ctr represents the reason-for relation only
weakly and not strongly. For, it is not the case that Γ ∼ ¬(∧ Θ → ∨

Λ), ∆ if
and only if Γ, Θ ≁ Λ, ∆. In an analogous way, the negation of conjunctions
only weakly represents the reason-against relation. For, it is not the case
that Γ ∼ ¬¬∧

Θ ∪ Λ, ∆ if and only if Γ, Θ, Λ ≁ ∆. For the purposes of
our project in this book, two quick remarks about this issue must suffice.
(i) The idea of strongly representing the reason-for relation is fraught with
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difficulties. The idea obviously requires, for instance, that, for every set and
every conditional, the set implies either the conditional or its negation. But
it seems wrong to think that we always either have reason for an arbitrary
conditional or for its negation. (ii) The issue is related in interesting ways
to the topic of validity predicates and the so-called v-Curry Paradox, and
we think that the issue is best discussed in that context, which is different
from our present context (see Beall and Murzi, 2013).21 So, we set aside
the idea of strongly representing reason relations.

This concludes our discussion of how logical vocabulary makes explicit
reason relations. Let us take stock. We saw that the logical vocabulary
of NMMS can make explicit arbitrary instances of the relation of being
a reason-for and being a reason-against, in the sense of explicitation
by implication. The logical vocabulary of NMMS can do this for any
base reason relations between sets of sentences whatsoever, including
nonmonotonic and nontransitive reason relations. In this sense, the logical
vocabulary is universally explicative of reason relations. Moreover, the
logical vocabulary of NMMS is such that every implication in the extended
vocabulary reflects a unique set of implications in the base vocabulary.
This is a second sense in which the logical vocabulary of NMMS makes
reason relations explicit. However, the logical vocabulary of NMMS cannot
represent arbitrary collections of implications in the base vocabulary in
a single implication in the logically extended vocabulary. We can move
to logical vocabulary that allows us to do this by rejecting Contraction
and changing our sequent calculus to NMMS\ctr. This yields an interesting
representation theorem for the logical vocabulary of NMMS\ctr. Overall,
we have seen in the previous section that the logical vocabulary of NMMS
can be elaborated from any autonomous base vocabulary. And we have
seen in this section that the logical vocabulary of NMMS can make explicit
arbitrary reason relations of any autonomous base vocabulary. Taking
these results together, we have shown that the logical vocabulary of NMMS
is universally LX. It is the kind of vocabulary that can play the role that
is the essential and characteristic role of logical vocabulary, according to
logical expressivism.

3.3 Making Local Structure Explicit

We have repeatedly emphasized the importance of allowing for failures of
structural principles, especially failures of monotonicity and transitivity.
Unless a theory allows for such failures, it cannot codify open reason
relations. And if logical expressivism is right in claiming that the
characteristic function of logical vocabulary is to make explicit reason
relations in general, including open reason relations, then any such theory
cannot provide an account of what logic makes explicit. Such a theory
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might correctly specify the narrowly logical part of a consequence relation,
but it cannot account for the essential explicitating function of logical
vocabulary that shows up in the capacity of logically complex sentences
that are not logically true to codify material reason relations.

Someone might acknowledge this importance of allowing for failures of
structural principles while also insisting that structural principles hold in
some areas of any consequence relation worth theorizing and that it is of
crucial importance to our practice of giving and asking for reasons what
these areas are. We agree. After all, we sometimes seem to tacitly assume
that the reason relations that govern a particular discourse are transitive
andmonotonic, and this seems to happen in particular in very sophisticated
and successful kinds of discourse, like those in mathematics, some parts
of physics, and the like. Moreover, sometimes we try to exploit only the
reason relations of classical logic and to codify all other reason relations
in the form of explicit definitions, which we then use as premises. In light
of such phenomena, it would be unsatisfying merely to be told that the
usual structural rules are invalid and should be rejected. In this section, we
show howwe canmove beyond such an unsatisfying position. In particular,
we show how we can theorize structural features that hold locally in
particular regions of consequence relations, and how we can introduce
logical vocabulary that makes such local structural features explicit in the
object language.

3.3.1 Regions of Monotonicity

In general, we hold that a good implication, Γ ∼ ∆, may be defeated by the
addition of a further premise, such that Γ, A ≁ ∆. And we hold that this can
also happen when we add further conclusions, such that it might be that
Γ ≁ B, ∆. However, there will typically be a wide range of additions to an
implication that do not defeat the implication. A pair of sets of sentences
⟨X, Y⟩ belongs to this range of non-defeating additions to Γ ∼ ∆ if and
only if Γ, X ∼ Y, ∆, that is, just in case adding the first member to the
premises and the second member to the conclusions yields another good
implication. We call the set of such pairs of non-defeating additions the
“range of subjunctive robustness” of an implication.22

Definition 10 (Range of subjunctive robustness, RSR ⟨Γ, ∆⟩). Given a set of
premises, Γ, and a set of conclusions, ∆, the range of subjunctive robustness
of ⟨Γ, ∆⟩ ∈ P(L)×P(L), written RSR ⟨Γ, ∆⟩, is the set of pairs, ⟨X, Y⟩, such
that Γ, X ∼ Y, ∆; that is, RSR ⟨Γ, ∆⟩ = {⟨X, Y⟩ ∈ P(L)× P(L) : Γ, X ∼
Y, ∆}.
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We can add any premises and conclusions to a good implication without
defeating the implication, as long as the addition is in the implications range
of subjunctive robustness. If we want to be explicit about an implication’s
range of subjunctive robustness, we can write Γ ∼↑R ∆ for ∀ ⟨X, Y⟩ ∈ R
(Γ, X ∼ Y, ∆). Then Γ ∼↑R ∆ if and only if R ⊆ RSR ⟨Γ, ∆⟩, and
RSR ⟨Γ, ∆⟩ is the largest set, Z, for which Γ ∼↑Z ∆.23 The larger the range
of subjunctive robustness of an implication is, the more it approximates a
sequent that holds persistently, that is, the more it approximates a sequent
where monotonicity holds locally.

When the range of subjunctive robustness of an implication is maximal
it includes all pairs of sets of sentences. If this is the case for Γ ∼ ∆, then
any application of [Weakening] yields another good implication, that is,
for any ⟨X, Y⟩ ∈ P(L) × P(L) we have Γ, X ∼ Y, ∆. We could write
this as Γ ∼↑P(L)×P(L) ∆, but to avoid clutter we will write it simply thus:
Γ ∼↑ ∆. Hence, monotonicity holds locally at the sequent Γ ∼ ∆ just in case
Γ ∼↑ ∆. Given that we think that monotonic consequence is an important
and noteworthy part of consequence, we can now express this by saying
that we are not only interested in ∼ but also in ∼↑, that is, not only in all
good implications but also those implications at which monotonicity holds
locally.

According to the conception of logic formulated in logical expressivism,
logical vocabulary should ideally allow us to make explicit when
monotonicity holds locally at an implication. With this interest in mind,
the following facts about our sequent rules are noteworthy: Firstly, if the
range of subjunctive robustness of a sequent includes all possible additions
of atomic sentences, then it includes all possible additions of any sentences
whatsoever. Or, in more formal terms:

Fact 11. X, Γ � ∆, Y is derivable for all ⟨X, Y⟩ ∈ P(LB)× P(LB) if and
only if Z, Γ � ∆, U is derivable for all ⟨Z, U⟩ ∈ P(L) × P(L); that is,
P(LB)× P(LB) ⊆ RSR ⟨Γ, ∆⟩ if and only if P(L)× P(L) ⊆ RSR ⟨Γ, ∆⟩.
(Appendix, Proposition 30)

In other words, if we can weaken an implication with arbitrary sets
of atomic sentences, then monotonicity holds locally at that implication.
Hence, if we can keep track of when we can weaken a sequent with
arbitrary sets of atomic sentences, then we can keep track of where
monotonicity holds locally.

The second noteworthy fact is that our sequent rules are such that if
all the top sequents of an application of a rule hold persistently, then the
bottom sequent also holds persistently:
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Fact 12. If all the top sequents of an application of any rule of NMMS (or
NMMS\ctr)24 are good implications at which monotonicity holds locally,
then the bottom sequent is a good implication at which monotonicity holds
locally, that is, if for every top sequent Γ � ∆ of an application of a rule of
NMMS (or NMMS\ctr) Γ ∼↑ ∆ holds, then, for the bottom sequent Θ � Σ,
we have Θ ∼↑ Σ. (Appendix, Proposition 31)

Given these two facts, we can introduce a new kind of sequent arrow,�↑, such that Γ �↑ ∆ is an axiom of our sequent calculus just in case for
all ⟨X, Y⟩ ∈ P(LB) × P(LB) we have X, Γ ∼

B
∆, Y. Moreover, we now

stipulate that all the rules of NMMS apply if all the top sequents are of
the new kind, and then a bottom sequent of the new kind can be derived.
For example, if our base obeys Containment, we will have p �↑ p. And we
can then apply the rule [R¬] to derive the sequent �↑p,¬p. Similarly, [R∨]
now lets us derive �↑p ∨ ¬p. By Fact 11, we know that p ∼↑ p. And using
Fact 12 we can infer that ∼↑ p ∨ ¬p. Hence, the sentence p ∨ ¬p follows
monotonically—or persistently—from every set of premises. If we call the
sequent calculus with the changes just specified NMMS↑, we can formulate
this insight in general terms as follows:

Proposition 13. The sequent Γ �↑ ∆ is derivable in NMMS↑ if and only
if monotonicity holds locally at Γ ∼ ∆, that is, Γ implies ∆ persistently.
(Appendix, Proposition 32)

Note that the monotonic part of our consequence relation may include
implications that are not in the narrowly logical part of the consequence
relation. We may, for example, include the following implication in our
base consequence relation: “PP is a parent of CC.” ∼ “CC is a child
of PP.” Moreover, we may want to include arbitrary applications of
[Weakening] to this implication with sentences from our base lexicon in
our base consequence relation. If we do that, this implication will hold
monotonically in our logically extended consequence relation. However,
the implication is not part of the narrowly logical part of our extended
consequence relation because its derivation requires axioms that are not
instances of Containment.

As logical expressivists, we don’t just want a concept of implications
at which monotonicity holds in our metalanguage. We would ideally
also like to be able to make this fact explicit in our object language.
More specifically, we would like to be able to make explicit, in the
object language, that something is not just implied but that it is implied
persistently. Persistence means the implication holds no matter what the
additional context might be, that is, come what may. That is one clear sense
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of “necessarily.” If our premise is that PP is a parent of CC, then this does
not just imply that CC is a child of PP. Rather, it implies that necessarily CC
is a child of PP; it implies that, relative to our premise, CC cannot fail to be
a child of PP. Hence we may write the object-language expression that we
want to add as “2”—like the necessity operator in standard modal logics,
which we will call the “Monotonicity Box.” The idea is to use this operator
to mark implications that have a maximal range of subjunctive robustness.
So that “PP is a parent of CC” implies: “2 CC is a child of PP.”

We can therefore expand our language L to L2 by including sentences
in which 2 occurs as a one-place connective, in the usual way. And let us
add the following rules to NMMS↑ and call the resulting calculus NMMS2,
where square brackets around an upward arrow indicate that the upward
arrow is optional, that is, the bottom sequent is derivable with and also
without the upward arrow.

Γ, A � ∆
[L2]

Γ,2A � ∆
Γ � ↑A, ∆

[R2]
Γ � [↑]2A, ∆

The left-rule for the box ensures that 2A implies everything that A implies.
And the right-rule says that if A is implied in a sequent decorated with an
upward arrow, then 2A is implied. Continuing our example from above, it
is easy to see that �2(p ∨ ¬p) is derivable in NMMS2, given that the base
obeys Containment. In general, the following holds:

Proposition 14. The sequent Γ �2A, ∆ is derivable in NMMS2 if and only
if Γ ∼↑ A, ∆. (Appendix, Proposition 33)

This result captures the sense in which the Monotonicity Box allows us
to make explicit local areas in which monotonicity holds. For it allows
us to make explicit when something is not just implied but persistently
implied. We can thus not only theorize monotonic consequence, including
material monotonic consequence, in our meta-language but we can make
this important structural feature of reason relations explicit in our object
language. Moreover, just like the results above, this holds universally, that
is, it holds for any base vocabulary whose reason relations we may want
to make explicit.

It is worth noting that while our Monotonicity Box behaves like a
standard necessity operator in many ways, it also differs in significant ways
from such standard necessity operators. Among its familiar behavior is that,
given any base that obeys Containment, all of the following implications
hold, using “3” to abbreviate “¬2¬”: 2A ∼ 3A, and ¬2A ∼ 3¬A;
moreover, (K) 2(A → B) ∼ (2A → 2B), and (4) ∼ 2(A → A), and (B)
∼ A → 23A, and (D)∼ 2A → 3A, and (5)∼ 3A → 23A all hold.
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Although these results look familiar from the modal logic S5, there
are important differences. The necessitation rule is not sound in NMMS2
because it can happen that �A is derivable but �2A isn’t derivable (and it
perhaps should not be derivable because∼↑ A doesn’t hold). Furthermore,
some results would seem very strange for familiar modal logics, such as that
the following implications hold, given a base that obeys Containment: ∼
A → 2A and ¬2A ∼ ¬A. Although these results might seem strange from
the perspective of standard modal logics, they are what one should expect,
given that the Monotonicity Box makes explicit local monotonicity. For
example,∼ A → 2A makes explicit by implication that A monotonically
implies A, which is ensured by Containment. And ¬2A ∼ ¬A holds
because ∼ ¬A,2A, which holds because ∼↑ ¬A, A, which is in turn
ensured by Containment and our negation rules.

To sum up, we have shown how to introduce a modal operator that
makes explicit where monotonicity holds locally, that is, the conclusion2A
is implied just in case the conclusion A is implied persistently. If our base
consequence relation obeys Containment, then all theorems of classical
logic will be persistent theorems of our extended consequence relation. So,
if ϕ is a theorem of classical propositional logic, then we have ∼ ↑ϕ and,
hence,∼ 2ϕ. Thus, we can make explicit by implication that the theorems
of classical logic are persistently implied by any set of premises. Moreover,
whenever the implication Γ ∼ ∆ is indefeasible, we have ∼ ↑ ∧ Γ → ∨

∆
and, hence,∼ 2(∧ Γ → ∨

∆). So we can make explicit by implication any
implication that holds indefeasibly—saying of it in the logically extended
object language that it holds indefeasibly.

3.3.2 Classicality, Contraction, and the General Case

In the previous subsection, we showed how one can make explicit when
monotonicity holds locally at an implication. The strategy that we used
there can be generalized to many other cases. To illustrate this, let us look
at classical logic again.

We have acknowledged above that there are discourses in which classical
logic is of crucial importance and all other implications are wrapped in
definitions of non-logical terms that one can use as premises. In this kind
of discourse, critical reflection and discussionmay require that we canmake
explicit implications that hold in classical logic. As already intimated above,
these are all and only the implications that can be derived in NMMS from
axioms that are instances of Containment. Those are the only implications
in a base consequence relation that hold in classical propositional logic.
Now, the analogue of Fact 12 above holds for classicality, namely:
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Fact 15. If all the top sequents of an application of any rule of NMMS hold
in classical propositional logic, then so does the bottom sequent.

In parallel to what we did above, we can introduce a new kind of sequent
arrow, �cl, and say that Γ �cl ∆ is an axiom of our new calculus just in
case Γ ∪ ∆ ⊆ LB and Γ ∩ ∆ ̸= ∅, that is, if it is an atomic instance
of Containment. Moreover, we add the one-place operator LclM to our
language, and we add the following rules toNMMS, thus yielding a calculus
we call NMMSLclM, where the square brackets indicate that the “[cl]”-mark
in the bottom sequent is optional:

Γ, A � ∆
[LLclM]

Γ, LclMA � ∆
Γ � cl A, ∆

[RLclM]
Γ � [cl]LclMA, ∆

It is then easy to prove the following result:

Proposition 16. If all the sentences in Γ ∪ ∆ ∪ {A} are in the language of
classical propositional logic, then the sequent Γ � LclMA, ∆ is derivable in
NMMSLclM if and only if Γ CL A, ∆. (Appendix, Proposition 34)

We can thus make explicit the classicality of an implication in the
same generic way in which we can make explicit that an implication
holds monotonically. As already intimated above, there can be monotonic
implications that are not classical implications. Moreover, there can
be monotonic implications that are not transitive, whereas classical
implications are closed under Cut. So, the Monotonicity Box and the
classicality operator are genuinely distinct notions.

Let us now step back and consider the overall strategy at work here. The
general recipe behind the operator that makes monotonicity explicit and
the operator that makes classicality explicit is the following. (a) There is a
feature some implications in our base vocabulary have. (b) This feature
is preserved by the rules of NMMS, that is, if all the top sequents in a
rule application have the feature, then so does the bottom sequent. (c)
An implication in the logically extended language has the feature only if
the corresponding sequent is derivable from just those axioms that have
the feature. If (a)–(c) hold, we can introduce a new sequent arrow whose
axioms are the base sequents with the feature at issue. We can read all the
sequent rules as applying to the new kind of sequent arrow, and we can add
rules that allow us to add a new operator on the left without further ado
and allow us to add the operator on the right if the top sequent uses the
new kind of sequent arrow. The result is an operator that makes explicit
implications in the logically extended vocabulary that have the feature at
issue.
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This recipe can be applied in many cases. We have seen how it applies
in the cases of monotonicity and classicality. It can also be applied to
Contraction, which can fail in NMMS\ctr, as explained above. So let us run
through the general recipe again for this case. Let us use F to talk about
the relevant feature, in our case Contraction. For the case of contraction,
we can define our feature as follows: F(Γ ∼ ∆) just in case Γ ∼ ∆ and,
for all Θ � Σ, if Θ � Σ can be derived from Γ � ∆ by just applications of
Contraction, then Θ ∼ Σ.

(a) Some implications, Γ ∼
B

∆ in our base are such that, for all Θ � Σ, if
Θ � Σ can be derived from Γ � ∆ by just applications of Contraction,
then Θ∼

B
Σ. Those are the base implications such that F(Γ∼

B
∆).

(b) Given the rules of NMMS\ctr, if all the top sequents of an application
of a rule have feature F, then the bottom sequent has feature F. That
is, if for all the top sequents it is admissible to apply the Contraction
rule, then it is admissible to apply the Contraction rule to the bottom
sequent.

(c) If some sequent derivable inNMMS\ctr has feature F, then it is derivable
from sequents that have feature F. That is, all sequents for which the
application of the Contraction rule is admissible, can be derived from
sequents for which the Contraction rule is admissible.

Since (a)–(c) hold for the feature of Contraction being admissible, we can
introduce a new sequent arrow, � f , and say that Γ � f ∆ is an axiom just
in case F(Γ∼

B
∆). We allow the rules of NMMS\ctr to apply when all top-

sequents use the new kind of sequent arrow � f . And we add the following
rules:

Γ, A � ∆
[LLfM]

Γ, L f MA � ∆
Γ � f A, ∆

[RLfM]
Γ � [ f ]L f MA, ∆

And we can then show that our new operator makes explicit the feature at
issue, which is the admissibility of Contraction in the present case. We can
formulate the result in general terms as follows.

Proposition 17. The sequent Γ � L f MA, ∆ is derivable in NMMS\ctr,L f M if and
only if F(Γ ∼ A, ∆).

For the particular case of the admissibility of Contraction, this result tells
us that our new operator allows us to make explicit when an implication
holds in such a way that Contraction can be safely applied.
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3.3.3 Cautious Monotonicity and Cumulative Transitivity

With the general strategy from the previous subsection in hand, we
may turn to two structural principles that are often deemed desirable in
nonmonotonic logics, but which we have argued in the previous chapter
are not desiderata for our project. These are Cautious Monotonicity (CM)
and Cumulative Transitivity (CT), which can be formulated thus:

Γ � A Γ � ∆
[CM]

Γ, A � ∆
Γ � A Γ, A � ∆

[CT]
Γ � ∆

As already intimated in the previous chapter, CM says that one can
never lose consequences by making implications explicit, in the sense of
adding them to one’s premises. And CT says that one can never gain
consequences by making implications explicit in this sense. Thus, these two
structural principles together say that explicitation—in the sense of adding
implications to one’s premises—is inconsequential. We reject this thesis,
and we hold that explicitation can be consequential.

Interestingly, local areas in which CM or CT hold cannot easily be made
explicit in the way we can make explicit monotonicity, classicality, and the
admissibility of contraction. It is instructive to see why this is so. Let us
start with CM.

The problem with CM as a global constraint is that, in the context
of a conditional that is adequate for logical expressivism, it implies a
much stronger condition. Recall that, according to logical expressivism, the
conditional must obey the Deduction-Detachment (DD) condition in order
to perform its explicitation function adequately. That is, Γ ∼ A → B, ∆
just in case Γ, A ∼ B, ∆. That is what it is for the conditional to make
the metalinguistic implication turnstile explicit in the logically extended
object language. Now, suppose that Γ, B, C ∼

B
D and Γ ∼

B
A but

Γ, B, C ≁
B

A. In the base consequence relation, CM does not require that
Γ, A, B, C ∼

B
D and we can, hence, stipulate that Γ, A, B, C ≁

B
D. For

A is not implied by Γ ∪ {B, C}; it is merely implied by a proper subset
of them, namely Γ. However, it follows from DD that Γ, B, C ∼ D just
in case Γ ∼ B → (C → D). We can now apply CM, and this yields
Γ, A ∼ B → (C → D), which by DD entails that Γ, A, B, C ∼ D. But that
contradicts our stipulation above.

If we insist that our conditional obey DD, as logical expressivism
suggests, and we insist that the logical extension of our base consequence
relation is conservative, then the only way to ensure that CM holds is to
enforce a stronger principle, which we call “Weakening with Implications
of Subsets” (WIS):
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Γ � A Γ, Θ � ∆
[WIS]

Γ, Θ, A � ∆

This principle says that if some premise-set implies a conclusion, say
Γ ∪ Θ ∼ D, and a subset of this premise-set implies something, say Γ ∼ A,
then we can weaken the original inference by adding the implication of
the subset of the premises as another premise, Γ ∪ Θ, A ∼ D. Thus, this
principle allows us to weaken any inference with any sentence that is
implied by any subset of the premises of the inference.

If a base consequence relation is closed under WIS, then WIS and, hence,
CM hold in the logically extended consequence relation. However, WIS is
too strong to be plausible. For, we want to allow for situations like the
following: “This is a chair” implies “You can sit on this.” “This is a chair”
and “This is a piece of art in an exhibition” implies “You are not allowed
to touch this.” However, if we combine the three claims as premises, “This
is a chair” and “This is a piece of art in an exhibition” and “You can sit
on this”, they do not imply “You are not allowed to touch this.” After all,
there are exhibitions that invite the audience to participate by using the
artwork.

To sum up, if one is willing to accept WIS as a constraint on base
consequence relations, then our logical extensions obey WIS and, hence,
CM. Given the constraints of logical expressivism that logical extensions
of reason relations are conservative and the conditional satisfies DD, this
is the only way to ensure that CM holds as a global structural principle.

If we don’t want to restrict ourselves to bases that obey WIS, we might
still want to make explicit when CM holds locally at an implication.
However, an interesting question arises here, namely what we mean by
“CM holds locally at an implication.” One thing one can mean by this is
that CM holds at an implication Γ ∼ A if and only if any implication
whose premises are exactly Γ can be weakened, on the left side, with A.

Definition 18 (CM holding locally). CM holds locally at an implication
Γ ∼ A just in case Γ ∼ A and, for all B, if Γ ∼ B, then Γ, A ∼ B.

If we want to make explicit by implication when CM holds locally in
this sense, we will try to introduce an operator, LcmM, such that Γ ∼ LcmMA
if and only if CM holds locally at Γ ∼ A. However, this idea is self-
undermining in the following way. Suppose that CMholds locally at Γ ∼ A
and Γ ∼ B. Moreover, Γ ∼ C but Γ, A, B ≁ C. Since CM holds at Γ ∼ B,
we can weaken the implication of C to get Γ, B ∼ C. Given how we would
like to make explicit when CM holds locally, we will also have Γ ∼ LcmMA
and Γ ∼ LcmMB. It follows from these two sequents that Γ, B ∼ LcmMA.
However, this is wrong; we have Γ, B ∼ C but Γ, A, B ≁ C. So there is
an implication of the premise-set Γ ∪ {B} that cannot be weakened with
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A, contradicting what we want Γ, B ∼ LcmMA to mean. Hence, while
Γ ∼ LcmMB holds if we consider just the implications that do not include
our new operator LcmM, the very introduction of this operator makes it the
case that Γ ∼ LcmMB no longer holds.

We call this kind of phenomenon an “expressive paradox.” And what we
mean by this is a situation in which something holds of an implication or a
set of implications but when we add to our object language the resources to
make explicit that this holds of the implication(s), it no longer holds. The
situation is similar to the attempt to introduce a sentence whose utterance
would allow one to make explicit that one is currently not uttering any
sentence.

While there may be ways to make explicit when CM holds locally that
do not give rise to expressive paradoxes, we shall not pursue this project
any further here. We want to point out, however, that the existence of
expressive paradoxes implies that the project of logical expressivism has
limits. Some features of reason relations may be such that they cannot be
made explicit without undermining them. And sometimes it might not be
possible to make two things both explicit at the same time, so that we have
to choose between the ability to make one explicit and the ability to make
the other explicit. We are inclined to think that semantic paradoxes like
the Liar Paradox and Curry’s Paradox can be understood as expressive
paradoxes and that seeing semantic paradoxes as particular instances of
the wider class of expressive paradoxes might be fruitful. However, we will
not pursue that idea in this work.

Finally, let us turn to Cumulative Transitivity (CT). There is no fully
satisfying way to make explicit when CT holds in a region of our
consequence relation. However, we can make explicit in which regions CT
together with Monotonicity hold in the following way (see Hlobil, 2017).

Definition 19 (MOT-base-regions). An MOT-base-region is a subset of ∼
B

that is closed under [Weakening] and under CT, that is, a subset such that (i)
if Γ ∼

B
A and Γ, A ∼

B
∆, then Γ ∼

B
∆, and (ii) if Γ ∼

B
A, then Γ, B ∼

B
A.

If mot.n is the nth MOT-base-region in which we are interested, we
introduce a sequent arrow �mot.n and let Γ �mot.n ∆ be an axiom of our new
calculus NMMSmot just in case Γ ∼

B
∆ holds and is in the MOT-base-region

mot.n. EachMOT-base-region will then have a logical extension, consisting
of the sequents derivable from axioms that are all in the MOT-base-region.
This logical extension of the MOT-base-region will also be closed under
CT and [Weakening]. We can then introduce an operator that allows us to
make explicit which implications belong to this logical extension, namely
as follows:
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Γ, A � mot.n∆
[LLmot.nM]

Γ, Lmot.nMA � [mot.n]∆
Γ � mot.n A, ∆

[RLmot.nM]
Γ � [mot.n]Lmot.nMA, ∆

We can then show that Γ ∼ Lmot.nMA, ∆ holds just in case Γ ∼ A, ∆
is in the logical extension of the MOT-base-region mot.n. Hence, if Γ ∼Lmot.nMA, ∆, then [Weakening] and CT are admissible for this implication if
the second top premise of the CT application is also in the logical extension
of the MOT-base-region mot.n (see Hlobil, 2017).

We thus have a way to keep track, in the object language, of regions
of our consequence relations in which Monotonicity and Cumulative
Transitivity hold, that is, regions that are closed under these rules. This
approach could be refined and further developed. For our current purposes,
however, it suffices to note that various structural features of consequence
relations can be made explicit in the object language. The degree of
difficulty and the amount of added complications vary between different
structural features. When Monotonicity or classicality hold logically at
an implication, we can make this explicit in a straightforward way by
using the recipe described in the previous two subsections. This recipe
works also when we reject Contraction as a global structural principle
and want to make explicit when Contraction is nevertheless admissible for
particular sequents. The cases of Cautious Monotonicity and Cumulative
Transitivity give rise to more complications. We have thus sketched the
beginning of an account of how and to what degree local structural features
of consequence relations can be made explicit. What we have said is merely
a start in this direction. It suffices, however, to illustrate in what kind of
new logical vocabulary a logical expressivist might be interested and how
such new logical vocabulary might be introduced. The logical expressivist
is interested in making explicit reason relations and their local structural
features. And in this section, we have seen how this interest gives rise to
questions and projects that have not been addressed, as far as we know, by
any extant logical theories.

3.4 Conclusion

The previous chapter introduced a stark distinction between two ways of
thinking about the relations between the two topics of our title: logic and
reasons. In the simplest terms, logicists about reasons understand reasons
in terms of logic: good reasons are, in the end, logically good reasons.
Expressivists about logic understand logic in terms of reasons: the defining
job of logical vocabulary is to make explicit reason relations of implication
and incompatibility. Expressivists must understand the reason relations
that logical vocabulary codifies as settled elsewhere, before logic comes
on the scene. We have sketched a pragmatics-first order of explanation,
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according to which those reason relations among sentences are instituted
by the norms governing their use in discursive practices of making claims
and challenging and defending them. We talk about “reason relations”
because being a reason is a relational property, and because reason relations
merely constrain and do not determine what one, ultimately, has reason
to accept or reject. Indeed, it is a bivalent relational property: reasons are
essentially, and not just accidentally, either reasons for or reasons against—
hence the two kinds of reason relations: implication and incompatibility. In
the next chapter we begin to consider a semantics-first order of explanation,
according to which the reason relations are settled by the relations of
sentences to worldly states that make them true or false. Also in Chapter
Four, we open the discussion of how to understand the relations between
those normative pragmatic and representational semantic perspectives on
the basic reason relations that expressivists understand as providing the
raw materials that metalogical machinery then puts into explicit logical
shape.

Since its Fregean origins, modern logic has been largely framed, shaped,
and conducted within the confines of a logicist philosophical understanding
of the enterprise. (We think that Frege himself was a rational expressivist,
but the motivation of our project does not turn on that controversial
hermeneutic claim.) The question we addressed in this chapter is how
one can and ought to do logic differently, if one instead understands the
enterprise philosophically in logical expressivist terms. What kind of logic
is motivated by expressivism in the philosophy of logic? How can one best
deploy what we have learned technically about logic during its development
under logicist auspices, in the service of fulfilling the aspirations of logical
expressivism? In subsequent chapters we ask a corresponding question
about model-theoretic formal semantics—with special attention to the
semantics of logical vocabulary.

In keeping with its logicism, the traditional philosophical understanding
of logic focuses on pure logic: reason relations that hold in virtue of
logic alone. In the sequent calculus, this means looking only at proof
trees whose leaves are instances of Containment, that is, derivations
from initial sequents of the form Γ, A � A, ∆. By contrast, we think logic
appears in its most characteristic and revealing guise when it is applied.
In the sequent calculus, this means looking at proof trees whose leaves
are sequents codifying substantial material implications—those whose
goodness is underwritten not by a structural principle such as Containment
but rather by the norms governing the use of the nonlogical sentences
involved, or the way they represent the world as being.

We can also think of the distinction from the side of analysis rather
than synthesis. (Perhaps it seems to be begging the question in favor of
logical expressivism to think of things in terms of applying to an antecedent
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field of material reason relations connective rules that we have stipulated.)
Given a set of relations of implication and incompatibility among
sets of sentences (including logically complex ones), and a distinction
between logical and nonlogical vocabulary, reason relations that hold in
virtue of logic alone (those that are due to the “logical form” of the
sentences involved rather than their nonlogical content) can be picked
out by using the Bolzano-Frege-Quine method of noting invariance under
substitution. The logically good implications, are those good implications
that remain good under uniform substitution of nonlogical for nonlogical
vocabulary (and similarly for incompatibilities), including substitutions
that include possible extensions or variations of the nonlogical vocabulary.
Substitutionally picking out this subset of purely logical reason relations
from an antecedently specified field of reason relations by seeing which
ones hold salva consequentia only works if one can both tell good from
bad implications without appeal to logically good implications, and can
demarcate logical from nonlogical vocabulary. Logical expressivism as we
have introduced it shows up as an option in the context of an order of
explanation that assumes competent linguistic practitioners must have at
least a rough and ready capacity to tell what is a reason for and against
what—that is, to distinguish successful from unsuccessful rational defenses
of and challenges to doxastic commitments (quite apart from whether
that feature of the pragmatics is in addition understood as reflecting or
instituting representational semantic properties of the sentences involved).

Against this background, logical expressivism then offers its distinctive
criterion of demarcation of specifically logical vocabulary. Logical
vocabulary is to be distinguished by its characteristic expressive role:
making reason relations explicit. Here “making explicit” is formulating
relations of implication and incompatibility as the content of declarative
sentences, which are understood as what can both be used to defend
or challenge other claims by offering reasons for or against them, and
can itself be defended or challenged by other claims. In Chapter Two,
where the expressivist understanding of the relation between logic and
reasons was introduced, it was argued that implicit in this conception
of the expressive task distinctive of logical vocabulary is a regulative
ideal: logical vocabulary should be elaborated from and explicative of any
and every base vocabulary. In our slogan, it should be universally LX.
Given any set of reason relations on a sentential lexicon (“universally”),
the rules for introducing logical vocabulary should make it possible to
compute (“elaborate”—the “L” in “LX”) the reason relations of the
logically extended vocabulary entirely from the reason relations of the base
vocabulary. Further, when used in accordance with the reason relations
elaborated from those of the base vocabulary, the new, logically complex
compounds of the original sentences should make it possible to say
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explicitly (“explicate”—the “X” in “LX”) what all those reasons relations
are—both those of the base and those of the extended vocabulary. Saying,
making explicit, in the relevant sense consists in putting into the form of
declarative sentences—that is, in claimable form, as what can be asserted
and denied, challenged and defended.

In this chapter, we have introduced the sentential logic that is our
best candidate for satisfying this expressive ideal, and shown how it
satisfies all the basic criteria of adequacy logical expressivism motivates.
Along the way, doing that required substantially clarifying and making
more concrete those criteria of adequacy. The metavocabulary we use to
introduce logical vocabulary is Gentzen’s sequent calculus. It is ideal for
our purposes because it treats reason relations (in the form of sequents)
as the objects that it manipulates and operates on. Its connective rules,
individually and collectively, define functions from reason relations codified
in a set of sequents relating sets of sentences of the base vocabulary to
reason relations codified in the form of sequents relating sets of sentences
of the logically extended vocabulary. The sequent calculus is accordingly
explicitly designed, and perfectly suited, to perform the aspect of the
function of logical vocabulary that consists in elaborating or computing
one set of reason relations from another. It operationalizes the sense in
which anyone who knows how to use the base vocabulary to make,
challenge, and defend claims expressed by its sentences thereby knows
how to do everything they need to know how to do in order to make,
challenge, and defend claims expressed by all the sentences of the logically
extended vocabulary. From an expressivist point of view, the sequent
calculus is the metavocabulary that most perspicuously displays this
essential aspect of the fundamental expressive task of logic. In Chapter
Five we introduce implication-space semantics as the corresponding ideally
perspicuous metavocabulary for computing the conceptual roles played by
more complex sentences from those played by simpler ones—where, in
accordance with semantic inferentialism, the conceptual roles of sentences
are understood as the roles they play in reason relations.

The core of what expressivism in the philosophy of logic asks of
logic is contained in the explicitation condition of the “universal LX-
ness” formulation. That is the requirement that to qualify as logical,
vocabulary must function to make explicit the reason relations of base
vocabularies to which it is applied. The fundamental reason relations
are implication or consequence, and incompatibility, corresponding to
reasons for and reasons against. We began by formulating a precise sense
in which familiar logical connectives can count as making such relations
explicit, which we denominated as “explicitation by implication.” Though
they appear in slightly generalized form in the multisuccedent sequent-
calculus formulation, explicitation by implication for the basic connectives
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of sentential logic is epitomized in the two principles governing the core
expressive connectives that codify implications and incompatibilities: the
Deduction-Detachment (DD) condition on conditionals, which says that
Γ ∼ A → B if and only if Γ, A ∼ B and the Incoherence-Incompatibility
(II) condition on negation, which says that Γ ∼ ¬A if and only if Γ, A ∼.
(The auxiliary, aggregative connectives of conjunction and disjunction
are governed by the corresponding Antecedent-Adjunction (AA) and
Succedent-Summation (SS) conditions.) The DD condition ensures that a
context implies the conditional A → B just in case, in that context, the
antecedent of the conditional A implies its consequent B. That is one
clear thing to mean by saying that the conditional codifies in the logically
extended object language the implications that are specified by the turnstile
in the sequent-calculus metalanguage. In that specific sense, the conditional
says that an implication is good. That is explication by implication. Where
DD holds, any implication can be explicitly expressed in the form of a
conditional. Similar remarks hold of the other connective conditions.

Explicitation, the ‘X’ portion of “Universal LX-ness,” in the sense of
explicitation by implication, requires satisfaction of the four conditions
DD, II, AA, and SS. The logic NMMS does so. Those conditions are
all biconditionals. The metalogical tractability and expressive power of
Gentzen’s sequent calculus (its enabling the capacity to prove things about
what things can be proven), however, depends on requiring that derivations
using connective rules always proceed from the logically simpler to the
logically more complex. That is, each step in a derivation, from the leaves
to the root of a proof tree, involves adding connectives. Gentzen’s student
Ketonen saw that using the same distinction between derivability and
admissibility that is exploited in Gentzen’s Cut-eliminability “Hauptsatz”
makes possible invertible rules—which permit the sort of biconditionals
explicitation by implication requires. For even though derivations always
move from the less to the more complex, it can still be arranged that
whenever the sequent below the sequent-derivation line is derivable, so
are the sequents above the line. Then the converse rule is admissible. That
makes it possible to have invertible rules, which if properly chosen can
satisfy DD, II, AA, and SS.

The Deduction-Detachment condition, the Incoherence-Incompatibility
condition and the other conditions on connective definitions provide
sufficient expressive power to guarantee the explicability by implication
of any and all individual reason relations. But as we have arranged the
logical extension of arbitrary base vocabularies by NMMS, there is also a
kind of group or collective explication, which is a further kind of expressive
completeness. For any NMMS implication relating sets of logically complex
sentences, we can compute exactly what set of implications must hold
in any base vocabulary for its logical extension to include that NMMS
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implication. That is, each implication of one set of logically complex
sentences by another codifies some particular set of implications in the
base vocabulary. We can understand that as what it says about the reason
relations of the base vocabulary. For the logical vocabulary of the non-
contractive calculus NMMS\ctr, the converse also holds: every set of
implications in the base vocabulary can be made explicit by a single sequent
in the logically extended vocabulary. The logic has the expressive power to
make explicit in a single implication the fact that any set of implications
holds in any base vocabulary. The clearly defined notions of explication by
implication, projection, and representation of logical vocabulary relative
to the base vocabularies to which it is applied make precise the idea of
making reason relations explicit that is at the heart of logical expressivism.
We show that NMMS satisfies that expressive ideal: it is LX for any and all
base vocabularies.

In sequent calculi, connective rules define functions from reason
relations to reason relations within the confines specified by the structural
rules. The aspiration to expressive universality of logic with respect
to reason relations—its being LX for any antecedent constellation
of implications and incompatibilities—would be compromised insofar
as the applicability, tractability, and expressive functionality of the
connective rules depended on structural presuppositions. The stronger
those presuppositions (Monotonicity and Transitivity as mixed-context
Cut, or only CautiousMonotonicity and Cumulative Transitivity as shared-
context Cut, etc.) the greater the infringement of the expressive ideal. We
show how to relax those structural constraints—indeed, to eliminate them
(though retaining Containment is shown to pay big dividends).25 Doing
that requires carefully tuning the connective rules so that they do not
implicitly reimpose structures that have not been explicitly stipulated in
the form of global structural rules. Since we hold, contrary to relevant
logics, that licensing, for instance, the move from Γ, A ∼ ∆ to Γ, A ∧ B ∼
∆ is a way to implicitly reimpose a kind of Monotonicity, relaxing the
structural constraints in such a careful way requires mixing additive and
multiplicative rules for conjunction and disjunction.26

In these ways, logical vocabulary can make explicit arbitrary reason
relations, according to the theory developed in this chapter. That is, the
logical vocabulary that we have introduced is universally explicative of
reason relations, including open reason relations. Hence, we have shown
how we can introduce logical vocabulary that is universally LX—that
is, that can be elaborated from any base vocabulary and make explicit
arbitrary reason relations. Crucially, this includes reason relations that
are structurally open rather than closed in various senses. Even radically
substructural reason relations can still be codified logically: not only
those in which Monotonicity and Transitivity fail, but even consequence
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and incompatibility relations that are hypernonmonotonic, in failing even
Cautious Monotonicity.

We have also shown how vocabulary can be introduced that makes
explicit where structural features hold locally in a consequence relation,
even where those structural constraints do not hold globally. This includes
local regions where Monotonicity, Classicality, and Contraction hold.
This new vocabulary for marking local regions of sequents where reason
relations satisfy various closure-structural conditions qualify as a kind
of logical vocabulary by our expressivist criterion of demarcation. For
instance, the intensional modal operator marking persistent (monotonic)
sequents—a kind of necessity corresponding to a maximal range of
subjunctive robustness of an implication—counts as a bit of logical
vocabulary, since it makes explicit a feature of reason relations: that not
only is an implication good, but so are all the implications related to it by
having premise-sets and conclusion-sets that are supersets of the originals.
By contrast, for instance, the set-theoretic epsilon does not qualify as a
bit of logical vocabulary, since it does not make explicit any feature of
reason relations as such. The new operators that we have introduced for
codifying the structural properties of reason relations illustrate that logical
expressivism gives rise to new interests and research questions, which
extant logical theories have not raised or addressed.

Things had to be arranged so that all three of these kinds of expressive-
explicative relations—explication by implication of individual sequents,
the capacity to express collections of sequents with logically complex
sequents, and the explicit marking with sentential operators of local
structural features of sequents—continue to work as desired in the
absence of global closure structure. That means that even if the base
vocabulary is nonmonotonic (or even hypernonmonotonic, in failing
Cautious Monotonicity), any set of base sequents is still expressible
explicitly as a set of sequents in the logically extended vocabulary—and
so, if we assume the bases are finite, in a single sequent relating sentences
in the logically extended lexicon. For this to hold, it must be that the reason
relations of the logically extended vocabulary are also open-structured. The
extended vocabulary is a conservative extension of the base vocabulary, so
at least those substructural or open-structured base sequents will remain so.
But their open structure will also be reflected in the structure of the sequents
that hold between sets of sentences in the logically extended lexicon. The
expressive role of the logical connectives requires that the relations of
consequence and incompatibility of the logically extended vocabulary do
not satisfy closure-structural principles, so as to be able to make explicit the
reason relations of base vocabularies that do not exhibit those structures
either.
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However, the fact that the implications and incompatibilities relating
logically complex sentences in the vocabulary that logically extends
particular material base vocabularies are substructural does not mean
that the purely logical reason relations of those logically extended
vocabularies—the implications and incompatibilities that hold in virtue of
logic alone—must also be open-structured. We can extract or abstract such
purely logical reason relations by an analogue of the Bolzano-Frege-Quine
method of noting invariance under substitution referred to just above.
Here what corresponds to observing which substitutions of nonlogical for
nonlogical vocabulary preserve the goodness of sequents (what can be
substituted salva consequentia) is to ask which sequents hold no matter
what base vocabulary the logical connective rules of the sequent calculus
NMMS are applied to. This will amount to only a tiny part of the sequents
relating sets of sentences in the logically extended lexicon that hold relative
to any particular material base vocabulary. But the reason relations that
in this sense hold in virtue of the logical form of sentences, regardless of
the content of the nonlogical sentences that appear there, will have the full
topological closure structure that Gentzen and Tarski demanded of notions
of logical consequence (and incompatibility as formal inconsistency). In
other words, what we are offering is not a nonmonotonic (nontransitive,
etc.) logic, as the recent tradition has conceived them. It is rather a logic
for codifying nonmonotonic (nontransitive, etc.) consequence relations
(and reason relations more generally). The expressivist philosophical
reconceptualization of the issue—the story about what kind of logic is
wanted once one acknowledges that reason relations do not in general have
the strong closure structure of traditional purely logical reason relations—
accordingly can be seen to have substantial consequences for the logics one
crafts in response.

The striking fact is that in spite of it remaining tractable and retaining
its substantial expressive power when applied to radically substructural
base vocabularies, NMMS is in a clear sense, just classical logic. In the
context of full global topological structural rules (Gentzen’s Weakening
and Cut, as well as Contraction and Contaiment), the mixed additive-
multiplicative, reversible Ketonen rules of NMMS just yield classical logic.
There are many such formulations of classical logic that are equivalent (in
the sense of determining the same purely logical consequence relation) in
the presence of those strong topological closure-structural restrictions, but
that come apart if those restrictions are relaxed. It turns out that under
such open-structured circumstances, the expressive powers of the various
logics varies substantially. We have chosen carefully among those once-
equivalent, now-diverging specifications of classical logic, to find one that
best satisfies expressivist requirements.
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3.5 Appendix

It will prove useful to start by introducing the notion of a proof-search.

Definition 20 (Proof-search). A (root-first) proof-search produces a proof-
tree from a sequent Θ � Σ, which is the root of the tree, by recursively
applying the following procedure until the process terminates when the
proof-tree no longer changes: (i) If Γ � ∆ is the leaf of a branch of the
tree at the current stage and all the sentences in Γ and ∆ are atomic,
then the branch remains unchanged. (ii) Otherwise, we look for the first
complex sentence in Γ � ∆ (starting on the left, ordering the sentences in
Γ and ∆ alphabetically) and build the branch up from that leaf by using
the appropriate rule of NMMS. For example, we apply the top-to-bottom
version of [L∨] (moving upwards in the tree) if the left-most complex
sentence in our sequent is a disjunction, thus yielding a fork in the tree
with three new leaves that are the three top sequents of our application
of [L∨], and similarly for the other cases. (Although we work with sets
(and so contraction is built in), we represent the sets in our sequents with
the number of copies of sentences that we get by applying this procedure
to the given representation of the root, thus treating our sets (in how we
represent them) like multi-sets.)

The results of proof-searches for representations of the root sequent that
differ in the numbers of copies of sentences do not differ, up to differences
in the number of copies of sentences.

Proposition 21. Proof-searches on Γ, A � ∆ and Γ, A, A � ∆ yield the same
results, and the same holds for proof-searches on Γ � A, ∆ and Γ � A, A, ∆,
up to differences in the number of sentences in the representations of the
sets.

Proof. If A is atomic, then the proof-search leaves it untouched. If A
is complex, it is a conjunction, disjunction, or negation (treating the
conditional as defined for simplicity, with A → B being ¬A ∨ B). Suppose
A = B ∧ C. Then applying our procedure with [L∧] to Γ, B ∧ C � ∆ yields
Γ, B, C � ∆, and applying it twice to Γ, B ∧ C, B ∧ C � ∆ yields Γ, B, C, B, C �
∆. Thus, the resulting set of premises is identical, up to the number of
copies of sentences. The cases for [R∨], [L¬], and [R¬] are analogous. For
[R∧], applying our procedure to Γ � B ∧ C, ∆ yields Γ � B, ∆ and Γ � C, ∆
and Γ � B, C, ∆. Applying the procedure twice to Γ � B ∧ C, B ∧ C, ∆ yields
Γ � B, B, ∆ and Γ � C, B, ∆ and Γ � B, C, B, ∆ and Γ � B, C, ∆ and Γ � C, C, ∆
and Γ � B, C, C, ∆ and Γ � B, B, C, ∆ and Γ � C, B, C, ∆ and Γ � B, C, B, C, ∆.
Each of the conclusion sets in these sequents is identical to that of one
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of the three sequents above, up to differences in the number of copies of
sentences. The case for [L∨] is analogous. ■

Proposition 22. Proof-searches (for finite sequents) terminate, and their
results are the same if we change the order of the sentences in Γ and ∆.

Proof. Proof-searches terminate because the root contains finitely many
logical connectives, and the children of a node always contain one fewer
connective than the parent node.

To show that the order doesn’t matter, it suffices to show that for each
pair of rules, the order in which they are applied doesn’t matter. If we
have, for example, ¬A, B ∨ C, Γ � ∆, applying our procedure to the first
two sentences yields: B, Γ � ∆, A and C, Γ � ∆, A and B, C, Γ � ∆, A. This
result is the same whether we use [L¬] first and then [L∨] or the other
way around. The same holds for all pairs of rules. Hence, the result of a
proof-search is order-independent. ■

Proposition 23. If all the leaves of a proof tree of NMMS can be weakened
with any set of atomic sentences, then the root of the proof tree can be
weakened with any set of sentences.

Proof. By induction on the maximal complexity of the sentences with
which one weakens the sequent. ■

Proposition 24. If base B obeys Containment, then for all Γ ∩ ∆ ̸= ∅ the
sequent Γ � ∆ is derivable in NMMSB, that is, the logical extension of the
base also obeys Containment.

Proof. By induction on the complexity of the most complex sentences in
Γ∪∆. The base case is immediate from the fact that∼

B
obeys Containment.

For the induction step it suffices to note that all instances of Containment
that feature sentences of complexity of at most n + 1 can be derived from
instances of Containment that feature sentences whose complexity is at
most n. ■

Proposition 25. If base B obeys Containment and Γ CL ∆ holds in
classical propositional logic, where the sentences in Γ and ∆ are in the
logical extension of the lexicon ofB, then the sequent Γ � ∆ is derivable in
NMMSB, that is, CL ⊆∼.

Proof. If [Weakening] and [Mixed-Cut] hold, then the rules of NMMS are
equivalent to (the propositional fragment of) Gentzen’s familiar LK sequent
rules for classical logic. In Gentzen’s LK, it is well-known that [Weakening]
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can be absorbed into the axioms and the axioms can be restricted to atomic
sequents, and [Mixed-Cut] can be eliminated by pushing applications of
it up the proof tree to the leaves, where [Mixed-Cut] holds because the
instances of Containment are closed under [Mixed-Cut]. ■

Proposition 26. If Γ ∪ ∆ ⊆ LB, then Γ ∼ ∆ just in case Γ∼
B

∆.

Proof. It suffices to note that all the rules of NMMS introduce logically
complex sentences into the bottom sequent. ■

Proposition 27. All the rules of NMMS are invertible, that is, the bottom
sequent is derivable just in case all the top sequents are derivable.

Proof. By induction on proof height. We just do the proof for [L→]; the
other cases are analogous. Suppose our proposition holds for proofs of
height n, and we derive Γ, A → B � ∆ is a proof of height n + 1. If the
root comes by [L→], we are done. If the root comes by any other rule, then
A → B occurs on the left in all top sequents, which are derived in proofs of
height n. Hence, we can apply our induction hypothesis, which yields three
sequents for each top sequent of the last rule application of our original
proof tree. And by applying the last rule applied in the original proof tree
we can now derive the desired three sequents: Γ � ∆, A and Γ, B � ∆ and
Γ, B � ∆, A. ■

Proposition 28. If Θ ∪ Λ ⊆ L and the sets are finite, then L includes
sentences that make explicit by implication that Θ is a reason for Λ and
that Θ is a reason against Λ; i.e., there are sentences, ϕ and ψ, such that,
for all Γ and ∆, we have Γ ∼ ϕ, ∆ just in case Γ, Θ ∼ Λ, ∆, and we have
Γ ∼ ψ, ∆ just in case Γ, Θ, Λ ∼ ∆.

Proof.
∧

Θ → ∨
Λ meets the condition for ϕ. And ¬∧

Θ ∪ Λ meets the
condition for ψ. For, the invertibility of the rules of NMMS ensures that
Γ ∼ ∧

Θ → ∨
Λ, ∆ just in case Γ, Θ ∼ Λ, ∆; and Γ, Θ, Λ ∼ ∆ if and only if

Γ ∼ ¬∧
Θ ∪ Λ, ∆. ■

Proposition 29. For any sequent Γ � ∆, with Γ ∪ ∆ ⊆ L, there is a unique
set AtomicImp of base-vocabulary sequents such that Γ � ∆ is derivable in
NMMSB just in case AtomicImp ⊆∼

B
.

Proof. All the rules of NMMS are invertible. Hence, supposing that Γ � ∆
contains finitely many sentences of finite length, the process of applying
the NMMS rules repeatedly in a proof search on Γ � ∆ yields a set of atomic
sequents in finitely many steps. Since the order in which we apply these
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(inverted) rules does not matter, this result is unique. Call the set of these
atomic sequents AtomicImp. Then Γ � ∆ is derivable in NMMSB just in case
AtomicImp ⊆∼

B
. ■

Proposition 30. X, Γ � ∆, Y is derivable for all ⟨X, Y⟩ ∈ P(LB)×P(LB)
if and only if Z, Γ � ∆, U is derivable for all ⟨Z, U⟩ ∈ P(L)×P(L).

Proof. The right to left direction is immediate from LB ⊂ L. The left to
right direction follows from Proposition 23. ■

Proposition 31. If for every top sequent Γ � ∆ of an application of a rule of
NMMS (or NMMS\ctr) Γ ∼↑ ∆ holds, then, for the bottom sequent Θ � Σ,
we have Θ ∼↑ Σ.

Proof. We can weaken each top sequent with the sentences (on the left and
the right) with which we want to weaken the bottom sequent, and derive
the desired sequent using the original rule. ■

Proposition 32. Γ �↑ ∆ is derivable in NMMS↑ if and only ∀ ⟨X, Y⟩ ∈
P(L)×P(L) (X, Γ ∼ ∆, Y).

Proof. Left-to-right: Suppose that Γ �↑ ∆. Then there is a NMMS↑ proof
tree in which all leaves are of the form Θ �↑ Λ. So we can weaken all
leaves with arbitrary atomic sentences. By Proposition 23, it follows that
∀ ⟨X, Y⟩ ∈ P(L)×P(L) (Γ ∼ ∆).

Right-to-left: Suppose that ∀ ⟨X, Y⟩ ∈ P(L) × P(L) (X, Γ ∼ ∆, Y).
Hence, ∀ ⟨X, Y⟩ ∈ P(L) × P(L) (X, Γ � ∆, Y) is derivable in NMMS↑.
In particular, ∀ ⟨X, Y⟩ ∈ P(LB) × P(LB) (X, Γ � ∆, Y) is derivable in
NMMS↑. In this case, X and Y cannot enter the proof tree anywhere but
in the leaves. Since ⟨∅, ∅⟩ ∈ P(LB) × P(LB), we know that Γ � ∆ is
derivable. It follows that, for each leaf of the proof tree for the root Γ � ∆,
we have the leaf Θ � Λ itself and also, ∀ ⟨X, Y⟩ ∈ P(LB) × P(LB), the
atomic sequent X, Θ � Λ, Y. Hence, we have Θ �↑ Λ for each leaf. So, we
can simply decorate the proof tree for Γ � ∆ with an upward arrow on
which sequent, and this yields a proof tree for Γ �↑ ∆. ■

Proposition 33. Γ �2A, ∆ is derivable in NMMS2 if and only if Γ ∼↑ A, ∆.

Proof. The right to left direction is ensured directly by our rules. Γ ∼↑ A, ∆
holds if Γ � ↑A, ∆ is derivable. And we can apply [R2] to get Γ �2A, ∆.

For the left to right direction it suffices to show that [R2] is invertible
and Proposition 32 still holds for NMMS2. The argument from the proof
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of Proposition 27 can be adjusted to apply to [R2]. And the argument for
Proposition 32 works exactly as for NMMS↑. ■

Proposition 34. If all the sentences in Γ ∪ ∆ ∪ {A} are in the language of
classical propositional logic, then the sequent Γ � LclMA, ∆ is derivable in
NMMSLclM if and only if Γ CL A, ∆.

Proof. Suppose that all the sentences in Γ ∪ ∆ ∪ {A} are in the language
of classical propositional logic. Then Γ CL A, ∆ holds just in case there
is a derivation of Γ � A, ∆ in NMMSLclM whose leaves are all instances of
Containment. This happens just in case there is a derivation of Γ �cl A, ∆ in
NMMSLclM; and the rules for LclM cannot be used in such a derivation becauseLclM does not occur in the root sequent. And since [RLclM] is invertible (by
the same argument as the other rules), this happens just in case there is a
derivation of Γ � LclMA, ∆. ■

Notes

1 While a discussion of alternative approaches to nonmonotonic consequence
would lead us too far afield, we can illustrate our point in the main text with
two quick remarks: First, in standard preferential logics, one adds a partial order
over classical models and says that Γ ∼ A if all the models of Γ that are minimal
in the partial order are models of A (Kraus et al., 1990). Since there is no model
of ⊥, it follows that Γ ∼ ⊥ if and only if there is no classical model of Γ, that is,
if Γ CL ⊥. Thus, standard preferential logics must treat incoherence as classical
and indefeasible.
Second, in standard default logics, one adds default rules of the form ϕ :

Mψ / χ to classical logic, which are to be read as saying that given ϕ one
can infer χ, as long as it is consistent to assume that ψ (Reiter, 1980). Then
extensions of sets of sentences are defined by a procedure that adds the
conclusion of a default whose premises are available, when this can be done in
a way that yields a classically consistent result, closing the result under classical
consequence. Such procedures can vary in their details (for instance, in the
ordering which defaults are applied, etc.). And the consequences of a set of
sentences are then defined in terms of such extensions; the simplest options
are to take either the union (credulous strategy) or the intersection (skeptical
strategy) of all such extensions. A classically consistent set of sentences cannot
yield a classically inconsistent extension, as classical consistency is the chief
constraint on extensions. Hence, the intersection of such extensions is also
classically consistent. So, given a skeptical strategy, Γ ∼ ⊥ if and only if Γ CL ⊥,
as in preferential logics. The union of extensions can be classically inconsistent,
and this might change if we add extra sentences to the set of sentences with
which we begin. So, the credulous strategy can allow for the nonmonotonicity
of incoherence. However, it is still classical consistency that is driving and



Introducing Logical Vocabulary 155

underlying this account, as the inconsistency of the conclusions arises only at
the stage where we take the union of the classically consistent extensions.

2 Cross (2003) gives one of the rare discussions of nonmonotonic incompatibility.
Let us point out that we avoid Cross’s result that Γ, A ∼ if and only if Γ ∼ A
yields a collapse into monotonicity because we reject the principle that if Γ ∼ A
and Γ ∼ ¬A, then Γ ∼ . Given our negation rules below, this principle is
equivalent to Cut and so we reject it when we reject transitivity. It is worth
noting, however, that we accept the related principle that Γ, A,¬A ∼ ∆, for any
Γ, ∆, and A. We thus hold that explicit contradictions are persistently incoherent
and imply everything. But if the contradiction is only implicit (in that both A and
not-A are implied), then a distinction can still be made between what follows
from the premises and what does not.

3 Below they will sometimes be multi-sets, namely when we discuss potential
failures of contraction. Multi-sets are like sets except that multi-sets can agree
in all their elements and still be distinct because they include different numbers
of occurrences (numbers of copies) of those elements, for example, {A, A}
and {A} are the same set but distinct multi-sets. We will flag when such
complications become relevant.

4 These are of course merely the best known generalizations, there are also hyper-
sequent calculi and many other generalizations. The generalization to multi-sets
is the only one that will become relevant below.

5 We will write interchangeably of accepting sentences and accepting their
contents. We will not offer any treatment of expressions that are sensitive to
contexts of utterance or the like; so that we canmake the simplifying assumption
that sentences always express the same content.

6 There are also formulations of bilateralism in the literature that do not work
with multiple conclusions (see Rumfitt, 2000; Smiley, 1996). The conception
of consequence in these other formulations differs from ours. So we set them
aside, although a detailed comparison would be an interesting project.

7 We think of this interpretation of offering a natural connection between our
use of sentences and consequence relations. We thus disagree with Steinberger’s
(2011) claim that semantic inferentialism is in tension with multiple-conclusion
calculi.

8 We will sometimes assume that the sets among which consequence relations
hold are finite. However, we make this assumption for convenience. We are
open to generalizing our notions of consequence, sequents, proof trees (below),
and the like to infinite sets of sentences and “proof trees” of infinite height (and
breadth). Since taking this complication into account would lead to technical
complications that we wish to avoid here (such as the need for transfinite
inductions), we make the simplifying assumptions that implications hold among
finite sets and that proof trees are finite in height. Of course, this assumption
would have substantive implications if we wanted to add arithmetic to our
consequence relations. However, we will not consider arithmetic or other
theories for which this assumption will be crucial.

9 This approach was first developed in (Hlobil, 2016), but there it was applied in
a Set-Formula setting to yield super-intuitionistic logics. Our use here is closer
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to (Kaplan, 2018), where the idea is applied in a Set-Set setting to yield super-
classical logics. Applications that yield first-order logics and relevance logics
have also been developed (Shimamura, 2019, 2017; Hlobil, 2018).

10 Note that the conditional ofNMMS is as much an idealization and simplification
of the natural language conditional as the so-called “material” conditional. Like
the “material” conditional, our ϕ → ψ is equivalent to ¬ϕ ∨ ψ. Hence, denying
the conditional “It is raining → The sky is blue” is out-of-bounds if and merely
because it is out-of-bounds to assert “It is raining” while denying “The sky is
blue.” And, by an inverted application (to be discussed shortly) of [L→], if it is
out-of-bounds to assert “It is raining → The sky is blue,” then it is also out-of-
bounds to deny “It is raining” or to assert “The sky is blue” or to do both. Our
aim regarding the conditional here is not to offer a plausible formal codification
of the natural language conditional but rather to introduce a conditional that
can make explicit reason relations.

11 It can easily be shown that negation together with one of the other connectives
suffices to define the remaining two connectives, in a way that is broadly
analogous to the functional completeness of the connectives in classical logic.

12 We will not speculate about how this might work at a cognitive or pragmatic
level, which would concern only particular agents and particular communities.
What matters to us is merely that nothing more than an appropriate ability to
use the base language is needed, whatever the mechanism is to transform this
ability into the ability to use logical vocabulary.

13 In standard technical language: NMMS has the subformula property.
14 Notable exceptions are connexive logics and strict-tolerant logic. We return to

the latter below.
15 For our purposes in this book, we can define the complexity of a sequent (or a

sentence) as the number of connectives that occur in it. Sometimes amore careful
definition as the number of connectives embedded under which the most deeply
embedded atomic sentence occurs are more convenient. However, what we say
holds for all such definitions of complexity. Hence, we will often not be precise
about which notion of complexity we have in mind.

16 We omit quotation marks to avoid clutter. Strictly speaking, what flanks
the snake-turnstile are terms for object language sentences and not object
language sentences. We trust context to disambiguate between a sentence and
its quote-name.

17 Here we use a recipe for turning examples of monotonicity failures into
examples of transitivity failures that was developed, in the context of discussing
conditionals, by Ryan Simonelli (2022). Related observations can be found in
Nair (2019).

18 Lakatos (1976) might be read as giving an example of how a definition of a
polyhedron that avoids such failures of monotonicity and transitivity could
arise. The simplistic example regarding triangles is alluded to in Lakatos (1976,
24), when student Sigma suggests that there are some mathematical theorems
with exceptions and others without exception, such as “the angle sum of all
plane triangles is always equal to two right angles.” And the passage continues:
“Epsilon (to Kappa):Who is this muddlehead?He should learn something about
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logic. Kappa (to Epsilon): And about non-Euclidean plane triangles.” It seems
to us that the temptation to make such objections shows how powerful the song
of the siren of Logicism about reasons is. Our project is to sail past such sirens,
tied to the mast if necessary, to explore what lies on the other side.

19 This can happen because, in nontransitive consequence relations, mutual
implication of two sentences does not entail that the two sentences can be
replaced for each other as premises and conclusions salva consequentia. The
importance of this fact will become clearer in Chapter Five, when we introduce
the notion of conceptual content in terms of substitutability salva consequentia.

20 The restriction to finite sets of base sequents holds because it might take
infinitely many steps to “combine” infinitely many base sequents into one
logically complex sequent. If we are willing to allow for proof trees with
infinitely many steps in our sequent calculus, then the theorem holds for all
sets of implications in the base consequence relation.

21 A validity predicate that strongly represents the reason-for relation in the
validity-free fragment of the language is presented by Hlobil (2020).

22 As wewill see in later chapters, this idea applies in important ways to “candidate
implications” or “bad implications”; their range of subjunctive robustness is
the set of pairs whose addition turns these implications into good implications.
This idea will become important in the implication-space semantics below. The
definition we give here is already general in this way, although we do not stress
this here.

23 It is possible to incorporate into the sequent calculus set theoretic manipulations
of the set in the place here occupied by R and Z. This is important in the case
of super-intuitionistic logics (see Hlobil, 2016). To quickly illustrate the basic
idea: If we define the upward arrow by saying that Γ ∼↑Z ∆ if and only if
∀ ⟨Θ, Σ⟩ ∈ Z (Θ, Γ ∼ Σ, ∆), then the following are immediate consequences:
If Γ ∼↑U ∆ and Γ ∼↑W ∆, then Γ ∼↑U∪W ∆. And if U ⊆ RSR of ⟨Γ, ∆⟩, then
Γ ∼↑U ∆ and Γ ∼↑U∩V ∆ for any set V. Such consequences can then inform
new kinds of sequent rules (see Hlobil, 2016). We will not need this machinery
in this work. Hence, we will not introduce any details here.

24 Everything in this section applies to both calculi. To avoid clutter, we will
henceforth refrain from mentioning NMMS\ctr explicitly.

25 Here and elsewhere we set aside the structural principle of Permutation. We
consider Contraction only occasionally. Thus, we usually take for granted that
collections of premises and conclusions are, in effect, sets.

26 That is not usually done because it blocks showing admissibility of Cut, given
failures of Monotonicity. But we do not want that, since not all the base
vocabularies whose implication relations we want to make explicit satisfy the
strong (mixed-context) transitivity condition that is Cut.




